期刊文献+

移动边缘计算中能耗优化的多重资源计算卸载策略 被引量:26

Energy efficient multi-resource computation offloading strategy in mobile edge computing
下载PDF
导出
摘要 移动边缘计算环境中边缘设备的能耗优化主要采用计算卸载策略。然而目前常用的计算卸载策略大多只考虑单一的计算资源,没有对移动边缘计算环境中不同种类的计算资源进行综合考虑,无法在保证响应时间约束的情况下充分降低边缘设备能耗。为了解决这一问题,在移动边缘计算环境中提出一种多重资源计算卸载能耗模型,设计了一种新的评价边缘设备能耗的适应度计算方法,并结合工作流管理系统提出了移动边缘计算中能耗优化的多重资源计算卸载粒子群任务调度算法,该算法能够在考虑响应时间约束的情况下,充分降低移动终端能耗。实验表明,与已有4种计算卸载策略相比,新策略所对应的任务调度算法收敛稳定、适应度最优,在用户响应时间约束下,任务调度方案的边缘设备能耗值优于其他4种卸载策略。 In the research on energy efficiency optimization of mobile edge computing,the computation offloading strategy of edge device is emphasis.However,the existing computation offloading strategy can only consider single computing resource and do not take into account the different type of computing resources in mobile edge computing,which cannot reduce the energy consumption of edge device with response time constraint.Therefore,a energy model of multi-resources computation offloading was proposed,and the fitness computation method of task scheduling plan was designed to evaluate the energy consumption of edge device.An energy efficient multi-resource computation offloading strategy task scheduling algorithm was presented to solve the energy consumption optimization problem of edge device.Experimental results showed that the propose algorithm could always achieve stable convergence speed,the optimal fitness and low energy consumption of edge device with the constraint of response time.
作者 徐佳 李学俊 丁瑞苗 刘晓 XU Jia;LI Xuejun;DING Ruimiao;LIU Xiao(School of Computer Science and Technology,Anhui University,Hefei 230601,China;School of Information Technology,Deakin University,Melbourne VIC3125,Australia)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2019年第4期954-961,共8页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(61672034 61300042) 安徽省自然科学基金资助项目(1708085MF160)~~
关键词 移动边缘计算 工作流调度 能耗优化 计算卸载 多重资源 mobile edge computing workflow scheduling energy efficient computation offloading multi-resource
  • 相关文献

参考文献2

二级参考文献27

  • 1Dellman E, Gannon D, Shields M, et al. Workflows and e-science: An overview of workflow system features and capabilities [J]. Future Generation Computer Systems, 2008, 25(5): 528-540. 被引量:1
  • 2Netjinda N, Sirinaovakul B, Achalakul T. Cost optimal scheduling in IaaS for dependent workload with particle swarm optimization [J]. The Journal of Supercomputing, 2014, 68(3): 1579-1603. 被引量:1
  • 3Lee Y, Han H, Zomaya A, et al. Resource-efficient workflow scheduling in clouds [J]. Knowledge-Based Systems, 2015, 80(5) : 153-162. 被引量:1
  • 4Yu J, I3uyya R, Tham C. Cost-based scheduling of scientific workflow applications on utility grids [C] //Proc of the /st IEEE Int Conf on e-Science and Grid Computing. Piscataway, NJ IEEE, 2005:1-8. 被引量:1
  • 5Wieczorek M, Prodan R, Fahringer T. Scheduling of scientific workflows in the ASKALON grid environment [J]. ACM SIGMOD Record, 2005, 34(3) : 56-62. 被引量:1
  • 6Xu J, Liu C, Zhao X. Resource planning for massive number of process instances [C] //Proc of the Move to Meaningful Internet Systems OTM2009. Berlin: Springer, 2009: 219- 236. 被引量:1
  • 7Wu Z, Liu X, Ni Z, et al, A market-oriented hierarchical scheduling strategy in cloud work{low systems [J]. The Journal of Supercomputing, 2013, 63(1). 256-298. 被引量:1
  • 8Hoffa C, Mehta G, Freeman T, et al. On the use of cloud computing {or scientific work[lows [C] //Proc o{ the 4th IEEE Int Con[ on eScience. Piscataway, NJ: IEEE, 2008: 640-645. 被引量:1
  • 9Sheng J, Wu W. Scheduling work[low in cloud computing based on hybrid particle swarm algorithm [J]. Telkomnika Indonesian Journal o[ Electrical Engineering, 2012, 10 (7) .. 1560-1566. 被引量:1
  • 10Pandey S, Wu L, Guru S, et al. A particle swarm optimization-based heuristic for scheduling work[low applications in cloud computing environments [C] /Proe of the 24th IEEE Int Con on Advanced Information Networking and Applications. Piscataway, NJ: IEEE, 2010: 400-407. 被引量:1

共引文献30

同被引文献148

引证文献26

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部