摘要
医学图像分割是医学图像处理领域中的关键步骤,随着深度学习技术的逐步深入,图像分割技术有了突飞猛进的发展。然而,在分割过程中,病灶特征的边缘像素点划分仍存在模糊、不准确的问题。为此,提出一种边缘增强的注意力模块(CEA),分别进行水平和垂直2个不同方向的特征编码捕获位置信息,并通过计算位置特征和输入特征之间的偏移量加强边缘信息。将该模块应用基于U-Net的医学图像分割网络中,可突破卷积核的空间限制,捕获具有位置感知的跨通道信息及更加明确的边缘轮廓信息,从而提高分割的准确性。在公开数据集Kvasir-SEG上的定量对比实验表明,加入注意力模块的网络在Dice、精确度、召回率等指标上均取得了更好的结果,可有效改善医学图像分割效果。
Medical image segmentation is vital for medical image processing. With the development of deep learning,image segmentation techniques have achieved remarkable development. However, there remain fuzzy and inaccurate problems in the discrimination of contour pixels for lesion features. To address the problems, we proposed a contour enhanced attention(CEA) module. It can obtain rich location information by feature encoding in two different directions and strengthen contours by calculating the offset between location features and input features. Furthermore,we constructed a U-Net for medical image segmentation based on the proposed module, it can break through the space limitation of convolution kernel, thus capturing position-aware cross-channel information and clearer edge contour information. In doing so, the accuracy of segmentation can be improved. Experiments on the public Kvasir-SEG dataset demonstrates that the network with CEA module achieves better results in Dice, precision, recall rate, and other evaluation indexes in medical segmentation.
作者
李翠云
白静
郑凉
LI Cui-yun;BAI Jing;ZHENG Liang(School of Computer Science and Engineering,North Minzu University,Yinchuan Ningxia 750021,China;The Key Laboratory of Images&Graphics Intelligent Processing of State Ethnic Affairs Commission,Yinchuan Ningxia 750021,China)
出处
《图学学报》
CSCD
北大核心
2022年第2期273-278,共6页
Journal of Graphics
基金
国家自然科学基金项目(61762003,62162001)
中国科学院“西部之光”人才培养引进计划(JF2012c016-2)
宁夏优秀人才支持计划
宁夏自然科学基金项目(2022AAC02041)。
关键词
医学图像分割
位置信息
注意力机制
边缘轮廓
边界差异
medical image segmentation
location information
attention mechanism
edge contour
contour differences