期刊文献+

基于深度学习的图像边缘检测算法综述 被引量:47

Review of image edge detection algorithms based on deep learning
下载PDF
导出
摘要 边缘检测是将图像中的突变的重要信息提取出来的过程,是计算机视觉领域研究热点,也是图像分割、目标检测与识别等多种中高层视觉任务的基础。近几年来,针对边缘轮廓线过粗以及检测精度不高等问题,业内提出了谱聚类、多尺度融合、跨层融合等基于深度学习的边缘检测算法。为了使更多研究者了解边缘检测的研究现状,首先,介绍了传统边缘检测的实现理论及方法;然后,总结了近年来基于深度学习的主要边缘检测方法,并依据实现技术对这些方法进行了分类,对其涉及的关键技术进行分析,发现对多尺度多层次融合与损失函数的选择是重要的研究方向。通过评价指标对各类方法进行了比较,可知边缘检测算法在伯克利大学数据集(BSDS500)上的最优数据集规模(ODS)经过多年研究从0.598提高到了0.828,接近人类视觉水平。最后,展示了边缘检测算法研究的发展方向。 Edge detection is the process of extracting the important information of mutations in the image.It is a research hotspot in the field of computer vision and the basis of many middle-and high-level vision tasks such as image segmentation,target detection and recognition.In recent years,in view of the problems of thick edge contour lines and low detection accuracy,edge detection algorithms based on deep learning such as spectral clustering,multi-scale fusion,and cross-layer fusion were proposed by the industry.In order to make more researchers understand the research status of edge detection,firstly,the implementation theory and methods of traditional edge detection were introduced.Then,the main edge detection methods based on deep learning in resent years were summarized,and these methods were classified according to the implementation technologies of the methods.And the analysis of the key technologies of these methods show that the multi-scale multi-level fusion and selection of loss function was the important research directions.Various methods were compared to each other through evaluation indicators.It can be seen that the Optimal Dataset Scale(ODS)of edge detection algorithm on the Berkeley Segmentation Data Set and benchmark 500(BSDS500)was increased from 0.598 to 0.828,which was close to the level of human vision.Finally,the development direction of edge detection algorithm research was forecasted.
作者 李翠锦 瞿中 LI Cuijin;QU Zhong(College of Electronic Information,Chongqing Institute of Engineering,Chongqing 400060,China;College of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《计算机应用》 CSCD 北大核心 2020年第11期3280-3288,共9页 journal of Computer Applications
基金 重庆工程学院高科技人才计划项目(2019gckv04) 重庆工程学院校内科研基金资助项目(2019xzky06,2018xzky12)。
关键词 边缘检测 深度学习 卷积神经网络 损失函数 多尺度融合 edge detection deep learning Convolutional Neural Network(CNN) loss function multi-scale fusion
  • 相关文献

参考文献1

二级参考文献54

  • 1贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3Geronimo D, Lopez A, Sappa A, et al. Survey of pedestrian de- tection for advanced driver assistance systems[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2010, 32 ( 7 ) : 1239- 1258. 被引量:1
  • 4Dollfr P,Wojek C,Schiele B,et al. Pedestrian detection:an e- valuation of the state of the art.IEEE, Trans. on Pattern Analysis and Machine InteUigence,2011,99:1 - 20. 被引量:1
  • 5Aggarwal J, Ryoo M. Human activity analysis: a review[J]. ACM Computing Surveys,2011,43(3),16:1-47. 被引量:1
  • 6Reilly V, Solmaz B, and Shah M. Geometric constraints for hu- man detection in aerial hnagery[ A] .In Proc. ECCV[C] ,2010. 被引量:1
  • 7Andfiluka M, Schnitzspan P, Meyer J, et al. Vision based victim detection from unmanned aerial vehicles [ A ]. In Proc. IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS) [ C]. Talpei, Taiwan, 2010. 被引量:1
  • 8Dollar P, Belongie S, Pemna P. The fastest pedeslrian detector in the west[A]. In Proc. BMVC[C] ,2010. 被引量:1
  • 9Enzweiler M, Gavrila D. Monocular pedestrian detection: sur- vey and experiments[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2009,31 (12) :2179 - 2195. 被引量:1
  • 10Dalai N, Tdggs B. I-listograms of oriented gradients for human detection[ A]. In Proc. 1EEE CVPR[ C], 2005,886 - 893. 被引量:1

共引文献158

同被引文献388

引证文献47

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部