期刊文献+

一种基于模糊主动轮廓的鲁棒局部分割方法 被引量:16

A Robust Local Segmentation Method Based on Fuzzy-energy Based Active Contour
下载PDF
导出
摘要 针对局部分割方法对初始轮廓敏感的问题,本文提出一种基于模糊主动轮廓的鲁棒局部分割方法.该方法利用图像的局部信息,定义一种新的平均模糊能量函数.通过对演化曲线进行形态学膨胀和腐蚀运算构建窄带,并在窄带范围内求解模糊能量函数的最小值来实现局部分割.为防止演化曲线陷入局部极小值,在迭代过程中加入对比度约束判断条件,进一步提高了分割方法对初始轮廓的鲁棒性.对合成图像和医学图像的分割实验结果表明,与已有的几种局部分割方法相比,本文方法在分割精度和鲁棒性等方面都有较大提高. Since the local segmentation method is sometimes sensitive to the initial contour, a robust local segmentation method based on average fuzzy-energy based active contour is proposed in this paper. A new average fuzzy energy function is defined by using the local image information. In order to achieve local segmentation, the minimization of energy function is solved in a narrow band constructed by morphological dilation and erosion operations. A contrast constraint condition is added in the iterative process to prevent the curve from falling into local minimum, which can further improve the robustness of the segmentation model against initial contour. Experimental results on synthetic images and medical images show that, compared to several existing local segmentation methods, the proposed method has considerable improvement in segmentation accuracy and robustness.
出处 《自动化学报》 EI CSCD 北大核心 2017年第4期611-621,共11页 Acta Automatica Sinica
基金 国家自然科学基金(81371635 81671848) 山东省重点研发计划项目(2016GGX101017) 教育部高等学校博士学科点专项科研基金(20120131110062)资助~~
关键词 模糊聚类 主动轮廓 局部分割 隶属度 对比度约束 Fuzzy clustering, active contour, local segmentation, membership, contrast constraint
  • 相关文献

参考文献7

二级参考文献148

  • 1Caselles V, KimmcI R, and Sapiro G. Geodesic active contours[J]. International Journal of Computer Vision, 1997, 22(1): 61-79. 被引量:1
  • 2Li C M, Xu C Y, Gui C F, et al.. Distance regularized level set evolution and its application on image segmentation[J]. IEEE Transactions on hnage Processing, 2010, 19(12): 3243-3254. 被引量:1
  • 3Chan T and Vese L. Active contour without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277. 被引量:1
  • 4Wang X F, Huang D S, and Xu H. An efficient local Chan-Vese model for image segmentation[J]. Pattern Recognition, 2010, 43(3): 603-618. 被引量:1
  • 5Lankton S and Tannenbaum A. Localizing region-based active contours[J]. IEEE Transactions on Image Processing, 2008, 17(11): 2029-2039. 被引量:1
  • 6Mille J. Narrow band region-ba.sed active contours and surfaces for 2D and 3D segrnentation[J]. Computer Vision and Imagc Understanding, 2009, 113(9): 946-965. 被引量:1
  • 7Zhang K H, Zhang L, Song H H, et al.. Active contours with selective local or global segmentation: a new formulation and level set method[J], linage and Vision Computing, 2010, 28(4): 668-676. 被引量:1
  • 8Shi Y H, Dong E Q, Li Z Z, et al.. Research on the segmentation of tiny multi-target in brain tissues based on support vector machines[C]. IEEE International Conference on Complex Medical Engineering, Harbin, China, May 22-25 2011: 478-482. 被引量:1
  • 9Zhao H K, Chan T, Merriman B, et al.. A variational level set approach to multiphase motion [J]. Journal of Computational Physics, 1996, 127(1): 179-195. 被引量:1
  • 10Chan T, Esedoglu S, and Nikolova M. Algorithms for finding global minimizers of image segmentation and denoising models [J]. Journal on Applied Mathematics, 2006, 66(5): 1632-1648. 被引量:1

共引文献94

同被引文献116

引证文献16

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部