期刊文献+

基于改进自编码器的在线课程推荐模型 被引量:2

Online Course Recommendation Model Based on Enhanced Auto-encoder
下载PDF
导出
摘要 随着互联网技术的发展以及2020年新冠疫情的爆发,越来越多的学生选择在线教育.然而在线课程数量庞大,往往无法及时找到合适的课程,个性化智能推荐系统是解决这一问题的有效方案.本文根据用户在线学习具有明显时序性的特点,提出一种基于改进自编码器的在线课程推荐模型.首先,利用长短期记忆网络改进自编码器,使得模型可以提取数据的时序性特征;然后,利用Softmax函数进行课程的推荐.实验结果表明,所提方法与协同过滤算法和基于传统自编码器的推荐模型相比,具有更高的推荐准确率. With the development of Internet technology and the outbreak of COVID-19 in 2020, more and more students have chosen online education. However, due to the large number of online courses, students are often unable to find suitable courses in time. A personalized intelligent recommendation system is an effective solution to this problem.Considering the obvious sequential characteristics of users for online learning, an online course recommendation model based on enhanced auto-encoders is proposed. First, the auto-encoder is enhanced with the long short-term memory network, so the model can extract the sequential characteristics of data. Then, the Softmax function is used to recommend online courses. Experimental results show that the proposed method has higher recommendation accuracy than the collaborative filtering algorithm and the recommendation model based on traditional auto-encoders.
作者 宋晓丽 贺龙威 SONG Xiao-Li;HE Long-Wei(China University of Petroleum,Qingdao 266580,China;Offshore Oil Engineering(Qingdao)Co.Ltd.,Qingdao 266520,China)
出处 《计算机系统应用》 2022年第3期288-293,共6页 Computer Systems & Applications
基金 中国石油大学(华东)教学研究与改革项目(QT-202005)。
关键词 深度学习 数据挖掘 自编码器 个性化推荐 deep learning data mining auto-encoder personalized recommendation
  • 相关文献

参考文献6

二级参考文献46

共引文献36

同被引文献27

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部