期刊文献+

基于均衡接近度灰关联的Slope One算法 被引量:4

Slope One Algorithm Based on Grey Correlational Analysis by Method of Degree of Balance and Approach
下载PDF
导出
摘要 作为一种基于项目的协同过滤推荐算法,Slope One算法易于实现且高效。但由于Slope One算法未考虑用户相似性,导致其在处理涉及用户关系的个性化推荐任务时性能不高。针对以上问题,提出了改进的Slope One算法。提出一种均衡接近度灰关联分析方法计算用户之间的均衡接近度,利用均衡接近度度量用户间的相似程度,然后将均衡接近度值融入到Slope One算法中进行评分预测,在MovieLens和Epinions数据集下的对比实验表明,该算法具有更低的平均绝对误差(MAE)和均方根误差(RMSE),提高了预测的准确度和推荐质量。 As an item-based collaborative filtering algorithm, Slope One algorithm is not only easy to implement, but also efficient. However, the performance of the Slope One algorithm is not well when dealing with personalized recommendation tasks, which require analyzing relationships. Considering that the above problems, an improved Slope One algorithm is proposed. Firstly, this paper proposes a grey correlational analysis by the method of degree of balance approach to calculate the degree of balance between users, which measures the degree of similarity between user-pairs, and then integrates it into Slope One algorithm for rating prediction. Finally, the comparison experiments on MovieLens and Epinions datasets show that the proposed algorithm has lower Mean Absolute Error(MAE)and Root Mean Squared Error(RMSE),improves the accuracy of prediction and recommendation quality.
作者 张岐山 陈露露 ZHANG Qishan;CHEN Lulu(School of Economics and Management,Fuzhou University,Fuzhou 350108,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第9期96-102,共7页 Computer Engineering and Applications
基金 国家自然科学基金(61300104) 福建省自然科学基金(2018J01791)。
关键词 协同过滤 均衡接近度 灰关联 Slope One算法 用户相似度 collaborative filtering degree of balance and approach grey relational analysis Slope One algorithm user similarity
  • 相关文献

参考文献9

二级参考文献64

  • 1黄光球,靳峰,彭绪友.基于兴趣度的协同过滤商品推荐系统模型[J].微电子学与计算机,2005,22(3):5-8. 被引量:20
  • 2张岐山,邓聚龙,邵勇.均衡接近度灰关联分析方法[J].华中理工大学学报,1995,23(11):94-98. 被引量:32
  • 3刘志昆,王卫平.基于精确序列模式的网页个性化推荐[J].计算机系统应用,2006,15(5):32-35. 被引量:2
  • 4SOMAN K P.数据挖掘基础教程[M].范明,牛常勇,译.北京:机械工业出版社,2009. 被引量:13
  • 5Jitendra M, Serge B, Thomas L, et al. Contour and texture analysis for image segmentation[J]. International Journal of Computer Vision, 2001, 43(1): 7-27. 被引量:1
  • 6Weiss Y. Segmentation using eigenvectors: A unified view[C]//International Conference on Computer Vision, Kerkyra, Greece: IEEE Computer Society, 1999: 975-982. 被引量:1
  • 7Fiedler M. Algebraic connectivity of graphs[J]. Czechoslovak Mathematical Journal, 1973, 23(98): 298-305. 被引量:1
  • 8Jianbo S, Jitendra M. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. 被引量:1
  • 9Hagen L, Kahng A B. New spectral methods for ratio cut partitioning and clustering[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1992, 11(9): 1074-1085. 被引量:1
  • 10Sudeep S, Padmanabhan S. Supervised learning of large perceptual organization: Graph spectral partitioning and learning automata[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(5): 504-525. 被引量:1

共引文献138

同被引文献23

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部