期刊文献+

K12学习平台个性化学习资源推荐 被引量:5

Recommendation of Personalized Learning Resources on K12 Learning Platform
下载PDF
导出
摘要 随着在线学习平台的普及,产生了大量学习行为数据,如何利用大数据挖掘技术分析在线学习行为,解决学习者经常面临的“资源过载”和“学习迷航”问题,更好地实现教学决策、学习过程优化和个性化学习方法推荐等,已经成为研究重点.文章基于苏州线上教育中心的学习行为数据,研究了常用的推荐系统模型,结合该平台的数据特点,提出了一种基于知识图谱的协同过滤推荐算法,利用该算法,平台推荐的资源准确率超过了90%,有效解决了学生“学习迷航”的问题. With the popularity of online learning platform,a large number of learning behavior data are generated.How to use big data mining technology to analyze online learning behavior,to solve the problem that learners often face“resource overload”and“learning confusion”,better implementation of teaching decision-making,learning process optimization,personalized learning method recommendation,etc.,has become a research focus.Based on the learning behavior data of Suzhou online education center,this work studies the common recommendation system model.Combined with the data characteristics of the platform,a collaborative filtering recommendation algorithm based on knowledge map is proposed.With this algorithm,the accuracy of the platform’s recommended resources is more than 90%,which effectively solves the problem of“learning lost”for students.
作者 徐亚军 郭俭 XU Ya-Jun;GUO Jian(Suzhou Baizhitong Information Technology Co.Ltd.,Suzhou 215000,China)
出处 《计算机系统应用》 2020年第7期217-221,共5页 Computer Systems & Applications
关键词 在线教育 知识图谱 协同过滤 资源推荐 online education knowledge map collaborative filtering resource recommendation
  • 相关文献

参考文献5

二级参考文献63

  • 1彭文辉,杨宗凯,黄克斌.网络学习行为分析及其模型研究[J].中国电化教育,2006(10):31-35. 被引量:146
  • 2林霜梅,汪更生,陈弈秋.个性化推荐系统中的用户建模及特征选择[J].计算机工程,2007,33(17):196-198. 被引量:45
  • 3MANOUSELIS N, DRACHSLER H, VERBERT K, et al. Recommender systems for learning [M] // SpringerBriefs in Electrical and Computer Engineering. Berlin: Springer-Verlag, 2013: 24-26. 被引量:1
  • 4LIU J, WANG X L, LIU X Z, et al. Analysis and design of personalized recommendation system for university physical education [C] // Proceedings of the 2010 International Conference on Networking and Digital Society. Piscataway: IEEE Press, 2010: 472-475. 被引量:1
  • 5SOUALI K, AFIA A E, FAIZI R, et al. A new recommender system for e-learning environments [C] // Proceedings of the 2011 International Conference on Multimedia Computing and Systems. Piscataway: IEEE Press, 2011:1-4. 被引量:1
  • 6HSU M H. A personalized English learning recommender system for ESL students [J]. Expert Systems with Applications, 2006, 34(1): 683-688. 被引量:1
  • 7KHRIBI M K, JEMNI M, NASRAOUI O. Toward a hybrid recommender system for e-learning personalization based on Web usage mining techniques and information retrieval [C] // Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2007. Chesapeake: Association for the Advancement of Computing in Education, 2007: 6136-6145. 被引量:1
  • 8YANG Q, YUAN Y, SUN J, et al. Semantic P2P-based learning resources personalized recommendation system design [C] // Proceedings of the Third Pacific-Asia Conference on Circuits, Communications and System. Piscataway: IEEE Press, 2011:1-4. 被引量:1
  • 9VESIN B, IVANOVIC M, BUDIMAC Z, et al. Protus 2.0: Ontology based semantic recommendation in programming tutoring system[J]. Expert Systems with Applications, 2012, 39(15): 12229-12246. 被引量:1
  • 10AKIKO A. An information-theoretic perspective of TF-IDF measures [J]. Information Processing and Management, 2003, 39(1): 45-65. 被引量:1

共引文献114

同被引文献41

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部