摘要
大量基于深度学习的视频目标分割方法存在两方面局限性:1)单帧编码特征直接输入网络解码器,未能充分利用多帧特征,导致解码器输出的目标表观特征难以自适应复杂场景变化;2)常采用前馈网络结构,阻止了后层特征反馈前层进行补充学习,导致学习到的表观特征判别力受限.为此,本文提出了反馈高斯表观网络,通过建立在线高斯模型并反馈后层特征到前层来充分利用多帧、多尺度特征,学习鲁棒的视频目标分割表观模型.网络结构包括引导、查询与分割三个分支.其中,引导与查询分支通过共享权重来提取引导与查询帧的特征,而分割分支则由多尺度高斯表观特征提取模块与反馈多核融合模块构成.前一个模块通过建立在线高斯模型融合多帧、多尺度特征来增强对外观的表征力,后一个模块则通过引入反馈机制进一步增强模型的判别力.最后,本文在三个标准数据集上进行了大量评测,充分证明了本方法的优越性能.
There are two limitations in existing deep learning based video object segmentation methods:1)the single frame encoding features are directly input into the network decoder,which fails to make full use of the multiframe features,resulting in the difficulty in adapting complex scene changes of the target appearance features of the decoded output;2)the feedforward network structure is adopted to prevent the feature feedback of the latter layer from the former layer for complementary learning.Therefore,this paper proposes a feedback Gaussian appearance network.By building an online Gaussian model and feedback the features of the back layer to the front layer,we can make full use of the multi-frame and multi-scale features to learn a robust video object segmentation model.Network structure includes three branches:guidance,query and segmentation branches.The guidance and the query branches extract the features of the guidance frame and the query frame by sharing the weights of the network,while the segmentation branch is composed of the multi-scale Gaussian appearance feature extraction module and the feedback multi-kernel fusion module.The former module enhances the representation of the appearance by building an online Gaussian model to fuse the multi-frame and multi-scale features,and the second module further enhances the discriminative capability of the model by introducing a feedback mechanism.Finally,experiments are carried out on three benchmark datasets,which fully proves the superiority of this method.
作者
王龙
宋慧慧
张开华
刘青山
WANG Long;SONG Hui-Hui;ZHANG Kai-Hua;LIU Qing-Shan(Collaborative Innovation Center on Atmospheric Environment and Equipment Technology,Jiangsu Key Laboratory of Big Data Analysis Technology,Nanjing University of Information Science and Technology,Nanjing 210044)
出处
《自动化学报》
EI
CAS
CSCD
北大核心
2022年第3期834-842,共9页
Acta Automatica Sinica
基金
国家新一代人工智能重大项目(2018AAA0100400)
国家自然科学基金(61872189,61876088,61532009)
江苏省自然科学基金(BK20191397,BK20170040)资助。
关键词
视频目标分割
表观建模
反馈机制
深度学习
Video object segmentation
appearance model
feedback mechanism
deep learning