期刊文献+

一种混合阈值剪枝的稀疏化训练图像识别算法 被引量:4

An Image Recognition Algorithm of Mixed Threshold Pruning and Sparsity Training
下载PDF
导出
摘要 卷积神经网络在图像识别的应用中,有大量的冗余参数,增大了计算量,降低了网络运行速度。针对这个问题,提出了一种混合多阈值的稀疏化训练剪枝算法,通过稀疏化训练和混合全局与局部阈值的剪枝算法,压缩了神经网络的模型。通过对缩放因子L1正则化,使重要性低的通道值接近0,进行稀疏化训练,再引入全局阈值和局部阈值剪枝掉接近于零的通道并防止模型向粗粒度方向压缩,并对其进行训练微调参数,得到了混合阈值剪枝的精简模型。最后为了验证本文方法有效性,在DOTA(a large-scale dataset for object detection in aerial images)数据集中进行测试,该算法在小幅度降低图像识别精度的前提下,成功地压缩模型90%大小,加快了53%的计算速度,取得了较好的效果。 There are a lot of nuisance parameter in the application of image recognition of convolutional neural network,which increases the amount of calculation and reduces the speed of network operation.In order to solve this problem,a mixed multi threshold pruning algorithm was put forward,which was to compress the model of neural network through sparse training and the printing algorithm with mixed global and local thresholds.Through the regularization of the scaling factor L1,the channel value of low importance was close to 0,sparse training was carried out,and then the global threshold and local threshold were introduced to cut off the channel close to zero and prevented the model from compressing to the coarse-grained direction.Lastly,the test was carried out in DOTA Dataset to verify the effectiveness of this method.Under the premise of reducing the accuracy of image recognition,the algorithm successfully compresses the 90%of the model size and speeds up the calculation speed by 53%and procures preferable effect.
作者 宋叶帆 王国书 盛步云 SONG Ye-fan;WANG Guo-shu;SHENG Bu-yun(School of Mechanical and Electrical Engineering,Wuhan University of Technology,Wuhan 430070,China;College of Power Engineering,Naval University of Engineering,Wuhan 430070,China)
出处 《科学技术与工程》 北大核心 2021年第2期638-643,共6页 Science Technology and Engineering
基金 湖北省自然科学基金(2015FCA115)。
关键词 卷积神经网络 剪枝算法 图像识别 稀疏化训练 阈值 正则化 模型压缩 convolutional neural networks pruning algorithm image recognition sparsity training threshold regularization model compression
  • 相关文献

参考文献14

二级参考文献80

共引文献808

同被引文献42

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部