摘要
针对加性高斯白噪声的图像信噪比低,图像细节丢失问题,结合现有卷积神经网络算法,提出了一种基于残差密集块的卷积神经网络图像去噪模型.该模型通过引入多级残差网络和密集连接,并对整体网络使用Leaky ReLU激活函数,去除不同等级强度噪声的同时,更好保留图像的有效信息,有效避免特征丢失.本文提出算法和深度卷积神经网络残差学习(DnCNN)模型对比,本文提出的模型在Set12和BSD68测试集上峰值信噪比平均提升了约0.12 dB,结构相似性平均提升了约0.0086,通过观察实验效果,表明该模型能够充分提取图像特征,保留图像细节,同时降低网络计算的复杂度.
Considering the low signal-to-noise ratio(SNR)and image detail loss caused by additive white Gaussian noise(AWGN),an image denoising model based on the convolutional neural network(CNN)with residual dense blocks is proposed on the basis of the existing CNN algorithms.By introducing a multi-stage residual network and dense connections and using the Leaky ReLU activation function on the whole network,the model can better retain the effective information of images and effectively avoid feature loss while removing the noise of different levels of intensity.Compared with the residual learning model of the denoising CNN(DnCNN),the proposed model has an improved peak SNR by about 0.12 dB on the Set12 and Bsd68 test sets and improved structural similarity by about 0.0086 on average.The test results reveal that the proposed model can fully extract image features,retain image details,and reduce the computational complexity of the network.
作者
李小艳
宋亚林
乐飞
LI Xiao-Yan;SONG Ya-Lin;YUE Fei(School of Software,Henan University,Kaifeng 475004,China)
出处
《计算机系统应用》
2022年第10期166-174,共9页
Computer Systems & Applications
基金
河南省科技研发项目(212102210078)
河南省重大科技专项(201300210400)
河南省重点研发与推广专项(科技攻关)(202102210380)