期刊文献+

基于眉眼子区域和零均值预处理的特征脸识别方法

The Eigenface Recognition Method Based on Eyebrow and Eye Sub Region and Zero Mean Preprocessing
下载PDF
导出
摘要 针对脸部有遮挡的人脸识别问题,本文提出将包含眉、眼的子区域作为训练图像与测试图像,同时,为减小光照对识别率的影响,将训练或测试图像调整为零均值图像,最后,本文提出了基于眉眼子区域和零均值预处理的特征脸识别算法;实验结果表明,本文算法的识别准确率较高,在训练图像为1张和6张的情况下,识别准确率分别达到60%和72%。 To address the problem of face recognition with occlusion,this paper proposes to take the eyebrow and eye sub region as the training image and test image.Meanwhile,the training or test images are adjusted to zero mean images to reduce the influence of illumination on the recognition.Finally,this paper proposes an eigenface face recognition algorithm based on eyebrow and eye sub region and zero mean preprocessing.The experimental results show that the recognition accuracy of the proposed algorithm is high.The recognition accuracy can achieve 60%and 72%when one training image and six training images are provided,respectively.
作者 李咏豪 LI Yong-hao(College of Computer Science and Engineering,Nanjing University of Science&Technology,Nanjing Jiangsu 210094)
出处 《数字技术与应用》 2020年第12期102-104,共3页 Digital Technology & Application
关键词 脸部遮挡 人脸识别 光照 识别准确率 face occlusion face recognition illumination recognition accuracy
  • 相关文献

参考文献5

二级参考文献36

  • 1Kirby M,Sirovich L.Application of the KL procedure for the characterization of human faces[J].IEEE Tran Pattern Anal Machine Intell, 1990,12( 1 ) : 103-108. 被引量:1
  • 2Turk M,Pentland A.Eigenfaces for recognition[J].J Cognitive Neuroscience, 1991,3 ( 1 ) : 71-86. 被引量:1
  • 3Turk M,Pentland A.Face recognition using eigenfaces[C]//Proceeding of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1994:586-591. 被引量:1
  • 4Pentland A.View-based modular eigenspaces for face recognition[C]// Proc IEEE Conf on CVPR,1994:84-91. 被引量:1
  • 5Yambor W,Draper B,Beveridge J R.Analysis of PCA-based face recognition algorithms : Eigenvector selection and distance measures[C]//Second Workshop on Empirical Evaluation Methods in Computer Vision, 2000. 被引量:1
  • 6Paul V,Michael J.Rapid object detection using a Boosted cascade of simple features[C]//Proc IEEE Conf on Computer Vision and Pattern Recognition, Kauai, Hawaii, USA, 2001. 被引量:1
  • 7Hansen L K,Salamon P.Neural network ensembles[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1990,12(10): 993-1001. 被引量:1
  • 8Schapire R E,Freund Y,Bartlett Y,et al.Boosting the margin:A new explanation for the effectiveness of voting methods[J].The Annuals of Statistics, 1998,26(5 ) : 1651-1686. 被引量:1
  • 9Pentland A,Starner T,Etcoff N,et al.Experiments with eigenfaces[J]. IEEE Trans Pattern Anal Machine Intell,2004,26(5):572-581. 被引量:1
  • 10Freund Y,Schapire R E.A decision-theoretic generalization of on line learning and an application to Boosting [J].Joumal of Computer and System Sciences, 1997(55) : 119-139. 被引量:1

共引文献367

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部