期刊文献+

结合强度和边界信息的非参数前景/背景分割方法 被引量:13

A Non-parametric Foreground/Background Segmentation Method by Fusion of Intensity and Edge Feature
下载PDF
导出
摘要 提出一种非参数前景背景分割方法.在将图像的强度信息与边界信息进行融合、提高运动目标检测的鲁棒性的同时,针对图像阴影区域的特性,通过阴影模型能够有效地检测阴影区域.实验结果表明该方法具有一定的实用性. This paper presents a novel segmentation method based on a non-parametric background model that has the ability of modeling multi-model. Firstly, both the intensity and edge features are used to improve robustness of the foreground detection. Secondly, we also present an adaptive shadow detection model to find the accurate moving objects. The experiment results show that our proposed method is effective.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2005年第6期1278-1284,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家科技攻关计划课题奥运科技专项(2001BA904B08) 国家"八六三"高技术研究发展计划(2001AA231031) 国家重点基础研究发展规划项目(G1998030608)
关键词 分割 减背景 核密度估计 阴影消除 segmentation background subtraction kernel density estimation shadow removal
  • 相关文献

参考文献18

  • 1Jabri S, Duric Z, Rosenfeld A, et al. Detection and location of people in video images using adaptive fusion of color and edge information [A]. In: Proceedings of International Conference on Pattern Recognition, Barcelona, Spain, 2000. 4627~4631 被引量:1
  • 2Cavallaro A, Ebrahimi T. Video object extraction based on adaptive background and statistical change detection [A]. In:Proceedings of SPIE Visual Communications and Image Processing, San Jose, California, 2001, 4310:465~475 被引量:1
  • 3Wren C R, Azarbayejani A, Darrel T, et al. Pfinder: Realtime tracking of human body [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780~785 被引量:1
  • 4Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking [A]. In: Proceedings of International Conference on Computer Vision and Pattern Recognition, Fort Colins, Colombia, 1999. 246~252 被引量:1
  • 5Stauffer Chris, Grimson W Eric. Learning patterns of activity using real-time tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 747~758 被引量:1
  • 6Karmann K, yon Brandt A. Moving Object Recognition Using An Adaptive Background Memory [M]. In: Cappellini V,ed. Time-Varying Image Processing and Moving Object Recognition. Amsterdam: Elsevier Science, 1990. 289~296 被引量:1
  • 7Ridder Christof, Munkelt Olaf, Kirchner Harald. Adaptive background estimation and foreground detection using Kalmanfiltering [A]. In: Proceedings of International Conference on Recent Advances in Mechatronics, Istanbul, Turkey, 1995.193~ 199 被引量:1
  • 8Gloyer B, Aghajan H K, Siu K Y, et al. Video-based freeway monitoring system using recursive vehicle tracking [A]. In:Proceedings of SPIE Symposium on Electronic Imaging: Image and Video Processing, San Jose, California, 1995, 2421:173~ 178 被引量:1
  • 9Kato Jien, Watanabe Toyohide, Joga Sebastien, et al. An HMM-based segmentation method for traffic monitoring movies [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1291~1296 被引量:1
  • 10Rittscher J, Kato J, Joga S, et al. A probabilistic background model for tracking [A]. In: Proceedings of European Conference on Computer Vision, Dublin, Ireland, 2000, 2:336 ~ 350 被引量:1

同被引文献210

引证文献13

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部