期刊文献+

基于深度学习的CTA影像冠状动脉分割 被引量:3

Coronary artery segmentation in CTA images based on deep learning
下载PDF
导出
摘要 冠心病作为高发病率的重大冠状动脉疾病,让影像科医生承担了繁重的工作强度。利用人工智能识别冠状动脉中的斑块,实现对冠心病血管狭窄程度的判断,可以减轻CT影像医生的工作强度。应用增加了注意力机制的U-Net网络对冠状动脉进行识别分割,可以大大减少大夫的诊断时间。应用增加了注意力机制的U-Net网络进行训练,最终使损失函数、准确率Accuracy以及Dice指标分别达到0.021 3、0.962 6、0.999 9。同时通过预测的结果可以看出效果令人满意。对后续斑块的定性分析、钙化积分计算等提供了良好的分割结果。 As a major coronary artery disease with high incidence rate, coronary heart disease has increased the working intensity of radiology doctor. Identifying plaque in coronary artery and judging degree of coronary artery stenosis by using artificial intelligence can reduce work intensity of CT imaging doctors. The U-Net network with attention mechanism is used to recognize and segment coronary artery which can greatly reduce doctor’s diagnosis time. The application of U-Net with attention mechanism in model training can minimize loss function to 0.021 3 and increase the accuracy and the dice to 0.962 6 and 0.999 9 respectively. This method provides good segmentation results for qualitative analysis and calcification score calculation of following plaques.
作者 冯雪聪 陈波 钱俊磊 曾凯 陈伟彬 李晓琳 潘红红 FENG Xuecong;CHEN Bo;QIAN Junlei;ZENG Kai;CHEN Weibin;LI Xiaolin;PAN Honghong(College of Electrical Engineering,North China University of Science and Technology,Tangshan HeBei 063210,China)
出处 《激光杂志》 CAS 北大核心 2022年第2期200-204,共5页 Laser Journal
基金 河北省省属高等学校基本科研业务费研究项目(No.JYG2020004):基于深度学习的结肠癌辅助诊断的研究 华北理工大学教育教学改革研究与实践项目(No.L20121)。
关键词 深度学习 冠心病 U-Net 注意力机制 deep learning coronary artery disease U-Net attention mechanism
  • 相关文献

参考文献8

二级参考文献57

  • 1闫成新,桑农,张天序.基于过渡区提取的多阈值图像分割[J].华中科技大学学报(自然科学版),2005,33(1):65-67. 被引量:11
  • 2李久权,王平,王永强.CT图像分割几种算法[J].微计算机信息,2006,22(02S):240-242. 被引量:29
  • 3牡丹,刘白鹭.肺气肿的影像学定量研究进展[J].实用放射学杂志,2006,22(5):610-613. 被引量:10
  • 4杨淑莹编著.VC++图像处理程序设计(第二版)[M].北京:清华大学出版社,2006. 被引量:3
  • 5Zhao Bin-sheng, Yankelevitz David. Two-dimensional multicriterion segmentation of pulmonary nodules on helical CT images [ J ]. Medical Physics, 1999,26 (6) : 889- 895. 被引量:1
  • 6Wakayama K, Kurihara N, Fujinloto S, et al. Relationship between exercise capacity and the severity of emphysema as determined by high resolution CT [ J ]. Europe Respiration Journal, 1993,6 (9) : 1 362-1 367. 被引量:1
  • 7Gurney J W,Jones K K,Robbins R A,et al. Regional distribution of emphysema : correlation of high resolution CT with pulmonary function tests in unselected smokers [ J ]. Radiology, 1992,183(2) :457-463. 被引量:1
  • 8John H M,Austin M D. Pulmonary emphysema:imaging assessment of lung volume reduction surgery [ J ]. Radiology, 1999,212( 1 ) : 1-3. 被引量:1
  • 9Gevenois P A, Vuyst P D, Sy M, et al. Pulmonary emphysema : quantitative CT during expiration [ J ]. Radiology, 1996,199( 3 ) :825-829. 被引量:1
  • 10Gonzalez R C, Woods R, E. Digital Image Processing, 2^rd ed . Prentice Hall [M].2002. 被引量:1

共引文献70

同被引文献23

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部