期刊文献+

基于文本数据挖掘的新冠疫苗接种的情感分析 被引量:4

Sentiment Analysis of COVID-19 Vaccination Based on Text Data Mining
下载PDF
导出
摘要 通过数据挖掘了解民众对全民接种新型冠状病毒肺炎疫苗的看法和情绪,为心理疏导、宏观调控提供依据。通过爬取原创微博,结合Single-pass和K-Means++算法聚类出微博主题,对疫苗市场、疫苗变异、疫苗科普等11个聚类出的主题分别进行情感分析,得出情感极性。分析研究显示,绝大多数类别的情绪为正向积极,但在涉及疫苗的不适宜人群时,负面情绪微博数量较其他类别明显增多,应针对此类人群进行心理疏导,同时新冠疫苗临床研究数据的不断完善以及疫苗上市监测和评价数据的增加也会让形势更明朗,负面情绪也会降低。 Through data mining,the public’s views and emotions on the nationwide vaccination of COVID-19 vaccine are understood to provide a basis for psychological counseling and macro-control.By crawling original micro-blogs and clustering micro-blog topics with Single-pass and K-Means ++ algorithm,11 clustering topics such as vaccine market,vaccine variation and vaccine science popularization were analyzed respectively to obtain emotional polarity.Analysis shows that the majority of the categories of emotions are positive,but when it comes to the unsuitable group of vaccines,the number of negative emotions is significantly increased compared with other categories.Psychological counseling should be carried out for these groups.At the same time,with the continuous improvement of vaccine clinical research data and the increase of vaccine marketing monitoring and evaluation data,the situation will be clearer,and the negative emotions will be reduced.
出处 《信息技术与标准化》 2022年第3期74-78,共5页 Information Technology & Standardization
基金 国家语委中心“多民族语言文本敏感信息监测与预警技术研究”项目,项目编号:ZDI135-98。
关键词 新型冠状病毒肺炎疫苗 主题发现 文本挖掘 情感分析 COVID-19 vaccine topic detection text mining sentiment analysis
  • 相关文献

参考文献9

二级参考文献109

  • 1王萌,李春贵,唐培和,王晓荣.一种主题句发现的中文自动文摘研究[J].计算机工程,2007,33(8):180-181. 被引量:8
  • 2潘新.基于复杂网络的舆情传播模型研究[D].大连:大连理工大学,2010.59-63. 被引量:1
  • 3HAN Jia-wei,MICHELINE K. Data mining:concepts and techniques [M]. San Francisco:Morgan Kaufmann Pubishers, 2001. 被引量:1
  • 4Duda R O,Hart P E. Pattem Classification and scene Analysis[M]. New York:John Wiley and Sons, 1973. 被引量:1
  • 5Park H S,Jun C H. A simple and fast algorithm for K- medoids clustering [J]. Expert Systems with Applications, 2009,36 (2) :3336-3341. 被引量:1
  • 6Milligan G W,Cooper M C. Methodology Review: Clustering Methods [J]. Applied Psychological Measurement, 1987,11 (4):329-354. 被引量:1
  • 7CUI Xiao-hui,POTOK T E. Document clustering analysis based on hybrid PSO +K-means algorithm [J]. Journal of Computer Sciences:Special Issue,2006(4):27-33. 被引量:1
  • 8XIAO Li-zhong,SHAO Zhi-qing,LIU Gang. K-means algotithm based on particle swarm optimization algorithm for anomaly intrusion detection [C]//Proc of the 6th World Congress on Intelligent Control and Automation,2006:5854- 5858. 被引量:1
  • 9HAN Yan-fang,SHI Peng-fei. An efficient approach for fish bone detection based on image preprocessing and particle swarm clustering [C]//Advanced Intelligent Computing Theories and Applications,with Aspects of Contemporary Intelligent Computing Techniques. Berlin: Springer,2007: 940-948. 被引量:1
  • 10CUI Xiao-hui,POTOK T E. Document clustering analysis based on hybrid PSO +K-means algorithm [J]. Journal of Computer Sciences:Special Issue, 2006(4):27-33. 被引量:1

共引文献129

同被引文献46

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部