期刊文献+

基于KD树改进的DBSCAN聚类算法 被引量:10

Improved DBSCAN Clustering Algorithm Based on KD Tree
下载PDF
导出
摘要 针对DBSCAN聚类算法随着数据量增大,耗时越发非常严重的问题,提出一种基于KD树改进的DBSCAN算法(以下简称KD-DBSCAN).通过KD树对数据集进行划分,构造邻域对象集,提前区分出噪声点和核心点,避免聚类过程中对噪声的邻域集计算以及加快了核心点对象的邻域集查询速度.文中以浮动车GPS数据为实验数据,对比传统DBSCAN算法和KD-DBSCAN算法的聚类效果和时间性能,实验结果表明KD-DBSCAN算法的聚类效果和传统的DBSCAN基本一致,但时间性能有很大的提升. To tackle the problem that density-based spatial clustering of applications with noise(DBSCAN)clustering algorithm is increasingly time-consuming with the increase in data volume,this study proposes an improved DBSCAN algorithm based on a K-dimensional(KD)tree(hereinafter referred to as KD-DBSCAN).The KD tree is used to divide the data set,construct the neighborhood object set,and distinguish the noise point and the core point in advance to avoid the calculation of the noise neighborhood set in the clustering process and speed up the neighborhood set query of the core point object.In this study,the global positioning system(GPS)data of a floating car is used as experimental data to compare the traditional DBSCAN algorithm and KD-DBSCAN algorithm in aspects of the clustering effect and time performance.The experimental results show that the KD-DBSCAN algorithm is comparable to the traditional DBSCAN algorithm in the clustering effect but has greatly improved time performance.
作者 陈文龙 时宏伟 CHEN Wen-Long;SHI Hong-Wei(College of Computer Science,Sichuan University,Chengdu 610065,China)
出处 《计算机系统应用》 2022年第2期305-310,共6页 Computer Systems & Applications
关键词 聚类 DBSCAN算法 KD树 clustering density-based spatial clustering of applications with noise(DBSCAN)algorithm KD tree
  • 相关文献

参考文献9

二级参考文献99

  • 1张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3李杰,贾瑞玉,张璐璐.一个改进的基于DBSCAN的空间聚类算法研究[J].计算机技术与发展,2007,17(1):114-116. 被引量:13
  • 4CHEN M S, HAN J H, YU P S. Data mining: An overview from a database perspective [ J]. IEEE Transactions on Knowledge and Data Engineering, 1996, 8(6): 866 -883. 被引量:1
  • 5KAUFAN L, RPUSSEEUW P J. Finding groups in data: An introduction to cluster analysis [ M]. New York: John Wiley & Sons, 1990. 被引量:1
  • 6ESTER M, KRIEGEL H P, XU X W. Knowledge discovery in large SPATIAL database: Focusing techniques for efficient class identification [ C]//Proceedings of the 4th International Symposium on Advances in Spatial Databases, LNCS 951. London: Springer-Verlag, 1995:67-82. 被引量:1
  • 7ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial database with noise [ C]//KDD - 96: Proceedings of the 2nd International Conference on Knowledge Discovering and DataMining. Portland, Oregon: [ s. n.], 1996:226-231. 被引量:1
  • 8GUHA S, RASTOGI R, SHIM K. CURE: An efficient clustering algorithm for large databases [ C]// Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1998:73-84. 被引量:1
  • 9AGRAWAL R, GEHRKE J, GUNOPOLOS D, et al. Automatic subspace clustering of high dimensional data for data mining application [C]// Proceedings of the ACM SIGMOD International Conference on Very Large Data Bases. Roma: Morgan Kaufmann Publishers, 2001:331-340. 被引量:1
  • 10ALEXANDROS N, YANNIS T, YANNIS M. C2P: Clustering based on closest pairs [ C]//Proceedings of the 27th International Conference on Very Large Databases. Roma: Morgan Kaufmann Publishers, 2001:331-340. 被引量:1

共引文献1164

同被引文献84

引证文献10

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部