期刊文献+

VDBSCAN:变密度聚类算法 被引量:22

VDBSCAN:varied density based clustering algorithm
下载PDF
导出
摘要 传统的密度聚类算法不能识别并聚类多个不同密度的簇。对此提出了变密度聚类算法VDBSCAN,针对密度不稳定的数据集,可有效识别并同时聚类不同密度的簇,避免合并和遗漏。VDBSCAN算法的基本思想是:根据k-dist图和DK分析,对数据集中的不同密度层次自动选择一组Eps值,分别调用DBSCAN算法。不同的Eps值,能够找到不同密度的簇。4个二维数据集实验验证了VDB-SCAN算法的有效性,表明VDBSCAN算法可以有效地聚类密度不均匀的数据集,且参数Eps的自动选择方法也是有效的和健壮的。 Density clustering has been widely used with such advantages as:its clusters are easy to understand and it does not limit itself to shapes of clusters.But existing density-based algorithms have trouble in finding out all the meaningful clusters for datasets with varied densities.This paper introduces a new algorithm called VDBSCAN for the purpose of varied-density datasets analysis.The basic idea of VDBSCAN is that,before adopting traditional DBSCAN algorithm,k-dist plot and DK (Difference between k-dists of neighboring points) analysis are used to select several values of parameter Eps for different densities.With different values of Eps,it is possible to find out clusters with varied densities simultaneity.Finally,4 synthetic 2-dimension databases are used for demonstration,and experiments show that VDBSCAN is efficient in successfully clustering uneven datasets.
作者 周董 刘鹏
出处 《计算机工程与应用》 CSCD 北大核心 2009年第11期137-141,153,共6页 Computer Engineering and Applications
关键词 变密度聚类算法 基于密度的聚类 DBSCAN 数据挖掘 Varied Density Based Clustering Algorithm(VDBSCAN) density-based clustering Density Based Spatial Clustering of Application with Nose( DBSCAN ) data mining
  • 相关文献

参考文献8

二级参考文献70

  • 1周水庚,周傲英,金文,范晔,钱卫宁.FDBSCAN:一种快速 DBSCAN算法(英文)[J].软件学报,2000,11(6):735-744. 被引量:42
  • 2周水庚.DBSCAN算法的扩展技术.复旦大学计算机科学系技术报告[M].,1999,4.. 被引量:1
  • 3[1]Beachmann N,et al.The R*-tree:An Efficient and Robust Access Method for Points and Rectanggles[C].Proc.of ACM SIGMOD Int'l Conf.on Management of Data,Atlantic:ACM Press,1998.73-84. 被引量:1
  • 4[2]Ester M,et al.A Densith-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C].Proc.of 2nd Int'l Conf.on Knowledge Discovering in Databases and Data Mining (KDD-96),Portland:AAA I Press,1996. 被引量:1
  • 5[3]Guha S,Rastogi R,Shimk.CURE:An Efficient Clustering Algorithm for Large Databases[C].Proc.of the ACM SIGMOD Int'l Conf.on Morgan Kaufmann,1997.186-195. 被引量:1
  • 6[4]Paul Stolorz,et al.Scalable High Performance Computing for Knowledge Discovery and Data Mining[M].Kluwer Academic Publishers,1997. 被引量:1
  • 7[6]Paul Stolorz,Ron Musick.Scalable High Performance Computing for Knowledge Discovery and Data Mining[M].Kluwer Academic Publishers,1997. 被引量:1
  • 8[8]T Zhang,R Ramakrishnan.Birch:An Efficent Data Clustering Method for Very Large Databases[C].Proceedings of the ACM SIGMOD Conference on Management of Data,Montreal,Canada,1996. 被引量:1
  • 9[9]G Milligan.An Algorithm for Creating Artificial Test Clusters[J].Psychometrika,1985,50(1):123-127. 被引量:1
  • 10[10]Paul Stolorz,Ron Musick.Scalable High Performance Computing for Knowledge Discovery and Data Mining[M].Kluwer Academic Publishers,1997. 被引量:1

共引文献434

同被引文献165

引证文献22

二级引证文献209

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部