期刊文献+

基于密度梯度的聚类算法研究 被引量:4

Research of clustering algorithm based on density gradient
下载PDF
导出
摘要 针对聚类中不规格形状数据点分布的处理难题,提出了一种基于密度梯度的聚类算法(CDG)。算法通过分析数据样本及其周边的点密度变化情况,选择沿密度变化大的方向寻找不动点,从而获取原始聚类中心,再利用类间边界点的分布情况对小类进行合并。实验结果表明,新算法较基于密度的带噪声数据应用的空间聚类方法(DBSCAN)具有更好的聚类性能。 In order to solve ditticult problems in clustering with irregularly distributed data set, a new clustering algorithm based on density gradient was provided. By analyzing the changing density of data sample and its neighbors, the algorithm searched points with the maximum density and took them as original centers of clusters. Then it combined some smaller clusters into larger ones according to the distribution of border points between clusters. Experimental results show that the new algorithm has better performance than Density Based Spatial Clustering of Applications with Noise(DBSCAN).
出处 《计算机应用》 CSCD 北大核心 2006年第10期2389-2392,2404,共5页 journal of Computer Applications
基金 福建省自然科学基金资助项目(A0510024) 福建省青年基金(2005J051) 广东省关键领域重点突破项目(2005A10207003)
关键词 聚类 模式分类 数据挖掘 clustering pattern classification data mining
  • 相关文献

参考文献11

  • 1XU R,DONALD WI.Survey of Clustering Algorithm[J].IEEE Transactions on Neural Networks,2005,16(3):645 -678. 被引量:1
  • 2NG RT,HAN JW.CLARANS:A Method for Clustering Objects for Spatial Data Mining[J].IEEE transactions on knowledge and data engineering,2002,14(5):1003-1016. 被引量:1
  • 3KHAN SS,AHMAD A.Cluster center initialization algorithm for Kmeans clustering[J].Pattern Recognition Letters,2004(25):1293-1302. 被引量:1
  • 4ESTER M,KRIEGEL H-P,SANDER J,et al.A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[A].Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining[C].Portland:ACM Press.1996.226-231. 被引量:1
  • 5ANKERST M,BREUNIG MM,KRIEGEL H-P,et al.OPTICS:Ordering Points to identify the clustering structure[A].In:Proceedings of the ACM SIGMOD Conference.Philadephia[C]:ACM Press.1999.49-60. 被引量:1
  • 6SANDER J,ESTER M,KRIEGEL H-P,et al.Density-based clustering in spatial databases:the algorithm GDBSCAN and its applications[J].Data Mining and Knowledge Discovery,1998,2(2):169 -194. 被引量:1
  • 7周傲英,周水庚,曹晶,范晔,胡运发.Approaches for Scaling DBSCAN Algorithm to Large Spatial Databases[J].Journal of Computer Science & Technology,2000,15(6):509-526. 被引量:12
  • 8蔡颖琨,谢昆青,马修军.屏蔽了输入参数敏感性的DBSCAN改进算法[J].北京大学学报(自然科学版),2004,40(3):480-486. 被引量:39
  • 9KRIEGEL H-P,PFEIFLE M.Density-based clustering of uncertain data[A].Proc.11 th Int.Conf.on Knowledge Discovery and Data Mining[C].Chicago,IL,2005.672-677. 被引量:1
  • 10HO TK,KLEINBERG EM.Checkerboard dataset[EB/OL].http://www.cs.wisc.edu/math-prog/mpml.html,1996. 被引量:1

二级参考文献10

共引文献47

同被引文献38

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部