摘要
为解决更为广泛的模糊决策问题,同时使决策信息与人的认知思维更为贴近,结合q阶犹豫模糊集和三角模糊数,提出了q阶三角犹豫模糊集的概念并定义了q阶三角犹豫模糊集运算。为了刻画信息集成过程中评价信息之间存在的关联关系,将Bonferroni平均算子推广至q阶三角犹豫模糊集,提出了q阶三角犹豫模糊Bonferroni平均算子。为了刻画更多的关联关系,将广义Bonferroni平均算子推广至q阶三角犹豫模糊集,提出了q阶三角犹豫模糊广义Bonferroni平均算子。考虑不同属性的评价信息的重要程度不同,提出了其加权形式。最后,提出了q阶三角犹豫模糊环境下的多属性决策方法,并以算例验证了实验结果。
In order to solve a wider range of fuzzy decision-making problems, and at the same time make decision information closer to human cognitive thinking, combining q-rung hesitant fuzzy sets and triangular fuzzy numbers, the concept of q-rung hesitant triangular fuzzy sets is proposed and the operation of q-rung hesitant triangular fuzzy sets is defined. In order to describe the relationship between evaluation information in the process of information integration, the Bonferroni mean operator is extend to the q-rung hesitant triangular fuzzy set, and the q-rung hesitant triangular fuzzy Bonferroni mean operator is proposed. In order to describe more correlations, the generalized Bonferroni mean operator is extend to the q-rung hesitant triangular fuzzy set, and the q-rung hesitant triangular fuzzy generalized Bonferroni mean operator is proposed. Considering that the importance of different attributes of evaluation information is different, their weighted form is proposed. In the end, a multi-attribute decision-making method under q-rung hesitant triangular fuzzy environment is proposed and verified the experimental results by an example.
作者
任耀军
袁修久
黄林
REN Yaojun;YUAN Xiujiu;HUANG Lin(Department of Basic Sciences,Air Force Engineering University,Xi’an 710051,China)
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2022年第1期181-191,共11页
Systems Engineering and Electronics
基金
国家自然科学基金(11671007)
陕西省自然科学基金(2019JM-271)
基础部研究生创新基金项目资助课题。