摘要
在旅游业发展目标动态化演变过程中,旅游政策在市场经济环境中起着重要的调控作用,是实现“十四五”期间畅通消费循环的重要手段。本文获取了2008-2019年间中央和地方政府发布的4547条旅游政策文件,运用LDA模型对其进行机器学习,对政策的主题、内容和演化进行了初步解析,随后构建空间面板模型对政策的有效性进行了实证分析,并探索其空间效应。研究表明,旅游业政策侧重旅游业的创新改革,并从供给侧对旅游市场经营和旅游安全防控进行规范管理,缺乏从需求侧对旅游消费的刺激政策。计量模型进一步证明了旅游政策对旅游业的综合发展有显著的促进作用,且具有正向的空间溢出效益,即本省的旅游政策也能促进周围省份旅游业的综合发展。因此,本文建议加强旅游政策的导向作用,合理规划政策内容并扩大旅游政策的辐射范围,实现旅游业的良性发展。
In the process of dynamic evolution of tourism development goals,tourism policy plays an important regulatory role in the market economy environment,and is an important means to achieve smooth consumption cycle during the“14th five year plan”.This paper obtains 4547 tourism policy documents issued by the central and local governments from 2008 to 2019,uses LDA model for machine learning,and makes a preliminary analysis of the theme,content and evolution of the policy,and then constructs a spatial panel model to empirically analyze the effectiveness of the policy,and explores its spatial benefits.The research shows that the tourism policy focuses on the innovation and reform of the tourism industry,and standardizes the management of tourism market operation and tourism safety prevention and control from the supply side,and lacks the incentive policy for tourism consumption from the demand side.The econometric model further proves that the tourism policy has a significant role in promoting the comprehensive development of tourism,and has a positive spatial spillover benefit,that is,the tourism policy of the province can also promote the comprehensive development of tourism in surrounding provinces.Therefore,this paper proposes to strengthen the guiding role of tourism policy,reasonably plan the policy content and expand the radiation scope of tourism policy,so as to realize the healthy development of tourism.
作者
刘冰洁
曾嘉悦
赵彦云
Liu Bingjie;Zeng Jiayue;Zhao Yanyun
出处
《经济问题探索》
CSSCI
北大核心
2021年第12期71-82,共12页
Inquiry Into Economic Issues
基金
中国人民大学科学研究基金重大规划项目“互联网统计学研究”(17XNLG09),项目负责人:赵彦云。
关键词
政策量化
旅游产业发展
LDA模型
机器学习
空间杜宾面板模型
Policy quantification
The development of tourism industry
LDA model
Machine learning
Spatial panel model