摘要
为了获得低噪声铟镓砷(InGaAs)焦平面,需要采用高质量的非故意掺杂InGaAs(u-InGaAs)吸收层进行探测器的制备。采用闭管扩散方式,实现了Zn元素在u-InGaAs吸收层晶格匹配InP/In0.53Ga0.47As异质结构材料中的P型掺杂,利用扫描电容显微技术(SCM)对Zn在材料中的扩散过程进行了研究,结果表明,随着扩散温度和时间增加,p-n结结深显著增加,u-InGaAs吸收层材料的扩散界面相比较高吸收层浓度材料(5×10^(16) cm^(-3))趋于缓变。根据实验结果计算了530℃下Zn在InP中的扩散系数为1.27×10^(-12) cm^(2)/s。采用微波光电导衰退法(μ-PCD)提取了InGaAs吸收层的少子寿命为5.2μs。采用激光诱导电流技术(LBIC)研究了室温下u-InGaAs吸收层器件的光响应分布,结果表明:有效光敏面积显著增大,对实验数据的拟合求出了少子扩散长度LD为63μm,与理论计算基本一致。采用u-InGaAs吸收层研制的器件在室温(296 K)下暗电流密度为7.9 nA/cm^(2),变温测试得到激活能E_(a)为0.66 eV,通过拟合器件的暗电流成分,得到器件的吸收层少子寿命τ_(p)约为5.11μs,与微波光电导衰退法测得的少子寿命基本一致。
In order to obtain low-noise InGaAs focal plane arrays,it is necessary to adopt high-quality InGaAs material with a low unintentionally doping concentration(u-InGaAs) to fabricate the detector.Zn diffusion with sealed-ampoule method on the lattice-matched InP/In0.53Ga0.47 As hetero-structure with a u-InGaAs absorption layer was carried out.And the Scanning Capacitance Microscopy(SCM) technology were used to study Zn diffusion in these samples.The results show that the junction depth increases significantly with the increase of diffusion temperature and time.The diffusion interface of materials with a u-InGaAs absorption layer tends to change slowly compared with relatively high concentration materials(5×10^(16) cm^(-3)).According to the experimental results,the diffusion coefficient of Zn into InP under 530 ℃ is figured out,which is 1.27×10^(-12) cm^(2)/s.The Microwave Photo Conductivity Decay method(μ-PCD) is used to extract the minority carrier lifetime of the InGaAs absorption layer.The measured minority carrier lifetime is 5.2 μs.Response distribution of devices with a u-InGaAs absorption layer at room temperature were studied by Laser Beam Induced Current technique(LBIC).The results show that the effective optically sensitive area increases significantly.The minority carrier diffusion length LD is 63 μm by fitting the experimental data,which is consistent with the theoretical calculation.The dark current density of the device with a u-InGaAs absorption layer is 7.9 nA/cm^(2) at room temperature,and the activation energy E_(a) is 0.66 eV.By fitting the dark current composition of the device,the minority carrier lifetime τ_(p) of the absorption layer of the device is about 5.11 μs,and the fitted minority carrier lifetime is consistent with the measured minority carrier lifetime.
作者
曹嘉晟
李淘
王红真
于春蕾
杨波
马英杰
邵秀梅
李雪
龚海梅
Cao Jiasheng;Li Tao;Wang Hongzhen;Yu Chunlei;Yang Bo;Ma Yingjie;Shao Xiumei;Li Xue;Gong Haimei(State Key Laboratories of Transducer Technology,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China;Key Laboratory of Infrared Imaging Materials and Detectors,Chinese Academy of Sciences,Shanghai 200083,China;University of the Chinese Academy of Sciences,Beijing 100049,China)
出处
《红外与激光工程》
EI
CSCD
北大核心
2021年第11期62-69,共8页
Infrared and Laser Engineering
基金
中国科学院重点部署项目(ZDRW-CN-2019-3)
中国科学院联合基金(6141A01170106)
上海市级科技重大专项(2019SHZDZX01)
国家自然科学基金(62075229)。
关键词
ZN扩散
结深
少子扩散长度
INGAAS
Zn diffusion
junction depth
minority carrier diffusion length
InGaAs