摘要
研究金丝桃苷的抗疲劳作用及其作用机制。将小鼠随机分为空白对照组、金丝桃苷低(5 mg/kg)、中(10 mg/kg)、高(20 mg/kg)剂量组,通过转棒实验和力竭游泳实验评价金丝桃苷的抗疲劳能力;通过酶联免疫吸附测定法检测小鼠的血乳酸(lactic acid, LA)、血尿素氮(blood urea nitrogen, BUN)、肝糖原(liver glycogen,LG)、肌糖原(muscle glycogen, MG)、肝组织中活性氧(reactive oxygen species, ROS)、丙二醛(malondialdehyde, MDA)、超氧化物歧化酶(superoxide dismutase, SOD)、谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-Px)等疲劳相关生化指标和氧化应激相关指标。通过分子对接技术分析和Western blot法分别检测金丝桃苷与核因子E2相关因子(nuclear factor erythroid 2-related factor 2, Nrf2)蛋白的结合情况及Nrf2信号途径相关蛋白血红素加氧酶1(heme oxygenase 1, HO-1)、NADPH醌氧化还原酶1(NADPH quinone oxidoreductase1, NQO1)的表达。结果表示,与空白对照组比较,金丝桃苷(5、10、20 mg/kg)能够剂量依赖性的显著延长小鼠的转棒停留时间和力竭游泳时间(P<0.05),显著降低小鼠LA和BUN的含量,增加LG和MG的含量(P<0.05);与空白对照组比较,金丝桃苷能够明显减少ROS和MDA含量,增加SOD和GSH-Px的活力(P<0.05);金丝桃苷与Nrf2的对接能量为-11.21 kcal/mol,提示Nrf2可能是金丝桃苷的潜在作用靶点。金丝桃苷能够增加胞核Nrf2的蛋白水平,上调HO-1和NQO-1的蛋白表达。以上结果表明,金丝桃苷能够通过调控Nrf2信号途径提高机体的抗氧化能力进而发挥其抗疲劳作用。
The present study was designed to explore the effects and mechanism of hyperoside on anti-fatigue in mice. The mice were randomly divided into four groups, including the control group, low-dose(5 mg/kg) hyperoside group, mediumdose(10 mg/kg) hyperoside group and high-dose(20 mg/kg) hyperoside group. The rotating rod test and exhaustive swimming test were used to determine the anti-fatigue effect of hyperoside. Then, the lactic acid(LA), blood urea nitrogen(BUN), liver glycogen(LG), muscle glycogen(MG), reactive oxygen species(ROS), malondialdehyde(MDA), superoxide dismutase(SOD), glutathione peroxidase(GSH-Px) were measured using enzyme-linked immunosorbent assay. There after,the binding energy between hyperoside and nuclear factor erythroid 2-related factor 2(Nrf2), and the protein expressions of Nrf2, heme oxygenase 1(HO-1), NADPH quinone oxidoreductase 1(NQO1) were detected by molecular docking and Western blot, respectively. The results showed that hyperoside(5, 10, 20 mg/kg) significantly increased the rotating rod lasting time and the exhaustive swimming time in mice than those of control group(P<0.05). Moreover, hyperoside markedly reduced the contents of LA and BUN, while increased the contents of LG and MG in mice than those of control group(P<0.05);hyperoside also obviously decreased the contents of ROS and MDA, increased the activities of SOD and GSH-Px in mice than those of control group(P<0.05). Of note, the binding energy of hyperoside with Nrf2 was-11.21 kcal/mol, which indicated that Nrf2 might be the potential target of hyperoside. Furthermore, hyperoside increased the level of Nrf2 in nucleus, as well as up-regulated the protein expressions of HO-1 and NQO-1. These findings suggested that hyperoside exerted anti-fatigue effect and antioxidative activity through mediating Nrf2 signaling pathway.
作者
郑传痴
杨艳
韦余
周旭美
高健美
ZHENG Chuanchi;YAN Yan;WEI Yu;ZHOU Xumei;GAO Jianmei(Pharmacy Department,the Second Affilicated Hospital of Zunyi Medical University,Zunyi 563000,China;Pharmacy Department,the Affilicated Hospital of Zunyi Medical University,Zunyi 563000,China;School of Pharmacy,Zunyi Medical University,Zunyi 563000,China)
出处
《食品工业科技》
CAS
北大核心
2021年第23期350-355,共6页
Science and Technology of Food Industry
基金
木姜叶柯甜茶综合开发利用科技创新人才团队(遵市科人才[2021]4号)。
关键词
金丝桃苷
抗疲劳
氧化应激
核因子E2相关因子
hyperoside
anti-fatigue
oxidative stress
nuclear factor erythroid 2-related factor 2