期刊文献+

Estimates and Monotonicity of the First Eigenvalues Under the Ricci Flow on Closed Surfaces 被引量:2

原文传递
导出
摘要 In the paper we first derive theevolution equation for eigenvalues of geomet-ric operator-ΔФ+cR under the Ricci flow and the normalized Ricci flow on a closed Riemannian manifold M,where,is the Witten-Laplacian operator,Ф∈C^(∞)(M),and R is the scalar curvature.We then prove that the first eigenvalue of the geometricoperator is nondecreasing along the Ricci flow on closed surfaces with certain curva-ture conditions when 0<c≤1/2.As an application,we obtain some monotonicityformulae and estimates for the first eigenvalue on closed surfaces.
出处 《Communications in Mathematics and Statistics》 SCIE 2016年第2期217-228,共12页 数学与统计通讯(英文)
基金 PRC Grant NSFC(11371310,11401514,11471145) the University Science Research Project of Jiangsu Province(13KJB110029) the NaturalScience Foundation of Jiangsu Province(BK20140804) the Fundamental Research Funds for the CentralUniversities(NS2014076) Qing Lan Project.
  • 相关文献

参考文献1

二级参考文献9

  • 1CAO Xiaodong. First eigenvalues of geometric operators under the Ricci flow[J]. Proceedings of the AMS. , 2008,136 : 4075-4078. 被引量:1
  • 2CAO Xiaodong. Eigenvalues of (-Δ+R/2) on manifolds with nonnegative curvature operator[J]. Math. Ann. ,2007,337(2) :435-441. 被引量:1
  • 3LEI Ni. The entropy formula for linear heat equation[J]. J. Geometry. Annal. , 2004,14: 369-374. 被引量:1
  • 4LI Junfang. Eigenvalues and energy functionals with monotonicity formulae under Ricci flow[J]. Math. Ann. , 2007,388 : 927-946. 被引量:1
  • 5LING Jun. A class of monotonic quantities along the Rieci flow[J/OL], http://arxiv, org/abs/0710. 4291v2. 被引量:1
  • 6MA Li, Eigenvalue monotonieity for the Rieci flow[J]. Annals of Global Analysis and Geometry, 2006, 337(2) : 435-441. 被引量:1
  • 7Perelman G. The entropy formula for the Ricci flow and its geometric applications[J/OL], http://arxiv. org/abs/math/0211159. 被引量:1
  • 8Schoen R, Yau S T. Lectures on differential geometry[C]//Coferrence Proceedings and Lecture Notes in Geometry and Topology, Volume I . Boston.. International Press Publications, 1994. 被引量:1
  • 9YE Rugang. Global existence and convergence of Yamabe flow[J]. J. Differential Geometry, 1982,17: 255-306. 被引量:1

共引文献1

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部