期刊文献+

Stick-and-play system based on interfacial adhesion control enhanced by micro/nanostructures 被引量:2

原文传递
导出
摘要 The evolution of membrane-type electronics has facilitated the development of stick-and-play systems,which confer diverse electrical functions to various planar or arbitrary curvilinear surfaces.The stick-and-play concept is based on the development of thin electronic devices in a printable format and their subsequent transfer to target surfaces.The development of this technology requires control of the interfacial adhesion of the electronic prints for retrieval from a carrier and transfer to the target surface.First,we discuss the transfer printing for membrane-type electronics,starting from an overview of materials available for flexible substrates,transfer printing of electronic prints for retrieval,and assembly for further integration.Second,we explain the stick-and-play concept based on fabricated membrane-type electronics;"stick" and “play"refer to the transfer of electronic devices and the performance of their electronic functions,respectively.In particular,we broadly survey various methods based on micro/nanostructures,including gecko-inspired,interlocking,cephalopod-sucker-inspired,and cilia structures,which can be employed to stick-and-play systems for enhancing interfacial adhesion with complex target surfaces under dynamic and wet conditions.Finally,we highlight the stick-and-play system application of micro/nanostructures for skin-attachable biomedical electronics,e-textiles,and environmental monitoring electronics.
出处 《Nano Research》 SCIE EI CSCD 2021年第9期3143-3158,共16页 纳米研究(英文版)
基金 supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(No.2018R1A2B2005067)and GIST Research Institute(GRI)grant funded by the GIST in 2020.
  • 相关文献

参考文献3

二级参考文献33

  • 1Kim, S.; Kwon, H. J.; Lee, S.; Shim, H.; Chun, Y.; Choi, W.; Kwack, J.; Han, D.; Song, M.; Kim, S., et al. Low-power flexible organic light-emitting diode display device. Adv. Mater. 2011, 23, 3511-3516. 被引量:1
  • 2Kuang, D.; Brillet, J,; Chen, P.; Takata, M.; Uchida, S.; Miura, H.; Sumioka, K.; Zakeeruddin, S. M.; Gratzel, M. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2008, 2, 1113-1116. 被引量:1
  • 3Kim, D. H.; Lu, N.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S.; Wu, J.; Won, S. M.; Tao, H.; Islam, A., et al. Epidermal electronics. Science 2011, 333, 838-843. 被引量:1
  • 4Viventi, J.; Kim, D. H.; Moss, J. D.; Kim, Y. S.; Blanco, J. A.; Annetta, N.; Hicks, A.; Xiao, J. L.; Huang, Y. G.; Callans, D. J., et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Transl. Med. 2010, 2, 24ra22. 被引量:1
  • 5Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two- dimensional transition metal dichalcogenides. Nat. Nano- technology 2012, 7, 699 712. 被引量:1
  • 6Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; China, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275. 被引量:1
  • 7Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805. 被引量:1
  • 8Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150,. 被引量:1
  • 9Yoon, Y.; Ganapathi, K.; Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 2011, 11, 3768- 3773. 被引量:1
  • 10Popov, I.; Seifert, G.; Tomanek, D. Designing electrical contacts to MoS2 monolayers: A computational study. Phys. Rev. Lett. 2012, 108, 156802. 被引量:1

共引文献29

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部