期刊文献+

Existence and Uniqueness to a Fully Nonlinear Version of the Loewner–Nirenberg Problem Dedicated to Celebrate the Sixtieth Anniversary of USTC 被引量:3

原文传递
导出
摘要 We consider the problem of finding on a given Euclidean domainof dimension n≥3 a complete conformally flat metric whose Schouten curvature A satisfies some equations of the form f(λ(−A))=1.This generalizes a problem considered by Loewner and Nirenberg for the scalar curvature.We prove the existence and uniqueness of such metric when the boundary δΩ is a smooth bounded hypersurface(of codimension one).When δΩ contains a compact smooth submanifold ∑ of higher codimension with δΩ\∑ being compact,we also give a‘sharp’condition for the divergence to infinity of the conformal factor near ∑ in terms of the codimension.
出处 《Communications in Mathematics and Statistics》 SCIE 2018年第3期269-288,共20页 数学与统计通讯(英文)
基金 supported by Spanish government Grants MTM2014-52402-C3-1-P and MTM2017-85757-P the BBVA Foundation Grant for Researchers and Cultural Creators 2016 supported by NSF Grant DMS-1501004.
  • 相关文献

同被引文献4

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部