摘要
本文主要研究Banach代数上算子矩阵的伪Drazin逆的存在性.首先,得到一些能够保证两个元素的和a+b具有伪Drazin逆的条件.然后,通过各种不同的矩阵分解,将得到的加性性质应用到算子矩阵上.同时,也将条件进行减弱,获得更加一般的情形.最后给出一些相关的数值例子,来论证所得到的结论.
The existence of the pseudo Drazin inverse of the operator matrices on Banach algebras is investigated.Some conditions that can guarantee the sum a+b has pseudo Drazin inverse are obtained.Then the additive property is applied to the operator matrices on Banach algebras by different matrix splitting.At the same time,the conditions are also weakened to get more general situations.Finally,some relevant numerical examples are presented to demonstrate the obtained results.
作者
王国栋
郭世乐
陈焕艮
WANG Guodong;GUO Shile;CHEN Huanyin(School of Mathematics,Hangzhou Normal University,Hangzhou 311121,China;School of Electronics and Information Engineering,Fujian Technical Teachers College,Fuqing 350300,China)
出处
《杭州师范大学学报(自然科学版)》
CAS
2021年第5期510-516,共7页
Journal of Hangzhou Normal University(Natural Science Edition)
基金
浙江省自然科学基金项目(LY17A010018)
福建省中青年教师教育科研项目(JA15570).