摘要
令a,b为Banach代数中的两个广义Drazin可逆元,a^d,b^d表示a,b的广义Drazin逆,a^π=1-aa^d.利用Banach代数中的幂等系统研究了两个元素a,b和的广义Drazin逆的表达式,得到ab^π=a,b^πba^π=b^πb,b^πa^πa^2b=b^πa^πaba,b^πa^πb^2ab=0,b^πa^πb^2a^2=0,b^πa^πba^2b=0,b^πa^πba^3=0等条件下和a+b的广义Drazin逆表达式.
Leta,bbe two generalized Drazin invertible elements in a Banach algebra and a^d,b^d denote thegeneralized Drazin inverse of the elementsa,b.Let a^π= 1-aa^d.The generalized Drazin inverse for the sum of twoelements in a Banach algebra is studied by means of the system of idempotents. The expressions for thegeneralized Drazin inverse for the sum a+b are presented under some conditions such as ab^π=a,b^πba^π=b^πb,b^πa^πa^2b=b^πa^πaba,b^πa^πb^2ab= 0,b^πa^πb^2a^2= 0,b^πa^πba^2b= 0,b^πa^πba^3= 0.
作者
谷天瑜
于德跃
许小杰
王舒一
郭丽
卢朝阳
丁许一
GU Tianyu;YU Deyue;XÜXiaojie;WANG Shuyi;GUO Li;LU Zhaoyang;DING Xuyi(School of Mathematics and Statistics,Beihua University,Jilin 132013,China;Zhejiang Guangxia Construction Vocational and Technical College,Dongyang 322100,China)
出处
《北华大学学报(自然科学版)》
CAS
2020年第1期12-16,共5页
Journal of Beihua University(Natural Science)
基金
国家自然科学基金青年基金项目(11601014)
吉林省教育厅科学技术研究项目(JJKH20180333KJ)
北华大学研究生创新计划项目(2018045,2019014)