摘要
元素a∈A称为伪Drazin可逆的,如果存在某个元素b∈A,使得ab=ba,b=bab,a^(k)-a^(k+1)b∈J(A)对某个正整数k成立.文章得到了一系列能保证算子矩阵是伪Drazin可逆的新条件,并且给出一些数值例子,来说明所得结果.
An element a∈A is called p-Drazin invertible if there exists some b∈A such that ab=ba, b=bab and a^(k)-a^(k+1)b∈J(A) for some positive integer k. This paper obtains a series of new conditions which can ensure that the operator matrix is p-Drazin invertible, and provides some numerical examples to illustrate the results.
作者
王国栋
郭世乐
陈焕艮
WANG Guodong;GUO Shile;CHEN Huanyin(School of Science,Hangzhou Normal University,Hangzhou 311121,China;School of Electronics and Information Engineering,Fujian Polytechnic Normal University,Fuqing 350300,China)
出处
《杭州师范大学学报(自然科学版)》
CAS
2021年第1期67-72,共6页
Journal of Hangzhou Normal University(Natural Science Edition)
基金
浙江省自然科学基金项目(LY21A010018)
福建省中青年教师教育科研项目(JA15570)。