期刊文献+

基于卷积神经网络的商品图像识别系统设计 被引量:6

Systems Design of Commodity Image Recognition Based on Convolution Neural Network
下载PDF
导出
摘要 随着在线购物、自助结算等新零售商业模式的发展,运营终端对商品智能识别和结算的需求越来越高。人工智能在突破硬件限制以后得到突破性发展,其所用的卷积神经网络技术能很好地支撑商品图像识别应用。对卷积神经网络的系统架构和模型进行改进,尤其是对耗时较长的训练学习模型进行优化设计。经实际测试:该设计能有效提高商品图像识别系统计算的速度和识别准确性,满足社会在智能化商务运营中高效结算的业务需求。 With the development of new retail business models such as online shopping and self-service settlement,the demand for intelligent identification and settlement of goods is increasing.Artificial intelligence has made a breakthrough after breaking through the hardware limitations,and its convolution neural network technology can well support the application of commodity image recognition.The system architecture and model of convolutional neural network are improved,especially the time-consuming training and learning model is optimized.The actual test shows that it can effectively improve the calculation speed and recognition accuracy of commodity image recognition system,and meet the business needs of efficient settlement in intelligent business operation.
作者 蒋达央 JIANG Dayang(Changzhou College of Information Technology,Changzhou Jiangsu 213164,China)
出处 《北京工业职业技术学院学报》 2021年第3期28-31,共4页 Journal of Beijing Polytechnic College
关键词 卷积神经网络 商品图像识别 系统设计 图像处理 convolution neural network commodity image recognition system design image processing
  • 相关文献

参考文献5

二级参考文献38

  • 1芮挺,沈春林,丁健,张金林.基于主分量分析的手写数字字符识别[J].小型微型计算机系统,2005,26(2):289-292. 被引量:22
  • 2Torralba A,Fergus R,and Freeman W T.80 million tiny images:Alarge data set for nonparametric object and scene recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):1958-1970. 被引量:1
  • 3Li F F and Perona P.A Bayesian hierarchical model for learning natural scene categories[C].Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'05),San Diego,CA,USA,2005,Vol.2:524-531. 被引量:1
  • 4Grin G,Holub A,and Perona P.The caltech-256.Technical report,Caltech,2007. 被引量:1
  • 5Lazebnik S,Schmid C,and Ponce J.Beyond bags of features:spatial pyramid matching for recognizing natural scene categories[C].Proceedings of the IEEE Computer Society Conference of Computer Vision and Pattern Recognition(CVPR'06),New York,USA,June 17-22,2006,Vol 2:2169-2178. 被引量:1
  • 6Nilsback M E and Zisserman A.Automated flower classification over a large number of classes[C].Proceedings of Computer Vision,Graphics and Image Processing in Indian,2008:722-729. 被引量:1
  • 7Agarwal S and Awan A.Learning to detect objects in images via a sparse,part-based representation[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2004,26(11):1475-1490. 被引量:1
  • 8Tomasik B,Thiha P,and Turnbull D.Tagging products using image classification[C].Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval,Boston,MA,USA,2009:792-793. 被引量:1
  • 9Nowak E,Jurie F,and Triggs B.Sampling strategies for bag-of-features image classification[C].9th European Conference on Computer Visionin Computer Vision ECCV 2006,Graz,Austria,May 7-13,2006:490-503. 被引量:1
  • 10Boiman O,Shechtman E,and Irani M.In defense of nearest-neighbor based image classification[C].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR'08),Anchorage,Alaska,USA,June 23-28,2008:1-8. 被引量:1

共引文献40

同被引文献36

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部