摘要
针对真实数据具有的模糊性和不确定性会严重影响小样本学习分类结果这一问题,改进并优化了传统的小样本学习原型网络,提出了基于模糊推理的模糊原型网络(FPN)。首先,从卷积神经网络(CNN)和模糊神经网络两个方向分别获取图像特征信息;然后,对获得的两部分信息进行线性知识融合,得到最终的图像特征;最后,度量各个类别原型到查询集的欧氏距离,得到最终的分类效果。在小样本学习分类的主流数据集Omniglot和miniImageNet上进行一系列实验。实验结果显示:在miniImageNet数据集上,所提模型在5类1样本的实验设置下精度达到49.38%,在5类5样本的实验设置下精度达到67.84%,在30类1样本的实验设置下精度达到51.40%;在Omniglot数据集上该模型的精度相较于传统的原型网络同样有较大提升。
In order to solve the problem that the fuzziness and uncertainty of real data may seriously affect the classification results of few-shot learning,a Fuzzy Prototype Network(FPN)based on fuzzy reasoning was proposed by improving and optimizing the traditional few-shot learning prototype network.Firstly,the image feature information was obtained from Convolutional Neural Network(CNN)and fuzzy neural network,respectively.Then,linear knowledge fusion was performed on the two obtained parts of information to obtain the final image features.Finally,to achieve the final classification effect,the Euclidean distance between each category prototype and the query set was measured.A series of experiments were carried out on the mainstream datasets Omniglot and miniImageNet for few-shot learning classification.On miniImageNet dataset,the model achieves accuracy of 49.38%under the experimental setting of 5-way 1-shot,accuracy of 67.84%under the experimental setting of 5-way 5-shot,and accuracy of 51.40%under the experimental setting of 30-way 1-shot;and compared with the traditional prototype network,the model also has the accuracy greatly improved on Omniglot dataset.
作者
杜炎
吕良福
焦一辰
DU Yan;LYU Liangfu;JIAO Yichen(School of Mathematics,Tianjin University,Tianjin 300350,China)
出处
《计算机应用》
CSCD
北大核心
2021年第7期1885-1890,共6页
journal of Computer Applications
关键词
小样本学习
模糊推理
原型网络
特征融合
深度学习
few-shot learning
fuzzy reasoning
prototype network
feature fusion
deep learning