期刊文献+

基于R2指标和目标空间分解的高维多目标粒子群优化算法 被引量:5

R2 indicator and objective space partition based many-objective particle swarm optimizer
原文传递
导出
摘要 基于R2指标和分解策略的多目标粒子群优化算法(R2-MOPSO)在求解2、3个目标优化问题时具有较好的收敛性和多样性,但在求解高维多目标优化问题时难度较大.对此,提出一种基于R2指标和目标空间分解的高维多目标粒子群优化算法(R2-MOPSO-II).首先借鉴R2指标和目标空间分解策略综合权衡选择过程的收敛性和多样性,设计双层档案维护策略;然后设计一种新的向导选择策略来连接目标空间和决策变量空间,进而提出一种基于双层档案的速度和位置更新策略以权衡粒子群优化算法的勘探和开采能力;最后通过引入高斯学习策略和精英学习策略防止粒子陷入局部最优前沿.数值仿真结果表明,所提出算法在求解DTLZ和WFG测试问题时具有较好的收敛性和多样性. The R2 indicator and decomposition based multiple particle swarm optimizer(R2-MOPSO)is suitable for solving two and three objectives optimization problems in terms of the convergence and diversity.However,it is difficult for the R2-MOPSO to address many-objective optimization problems(MaOPs).Therefore,we propose an R2 indicator and objective space partition based many-objective particle swarm optimizer(R2-MOPSO-II)to solve MaOPs.Firstly,a new bi-level archive maintainence strategy is introduced to balance the convergence and diversity after considering the R2 indicator and the objective space partition strategy.Then,a new leader selection strategy gives the bridge between objective space and decision variable space.The modified velocity updated equation based on bi-level archive is introduced to balance the exploration and exploitation.Finally,the Gaussian learning strategy and the elitist learning strategy are embedded into the proposed algorithm to help the algorithm jump out of local Pareto front.The numerical simulation results show that the proposed algorithm has achieved better convergence and diversity for solving DTLZ and WFG test instances.
作者 李飞 吴紫恒 刘阚蓉 葛二千 LI Fei;WU Zi-heng;LIU Kan-rong;GE Er-qian(School of Electrical and Information Engineering,Anhui University of Technology,Ma’anshan 243032,China;Anhui Provincial Key Laboratory of Power Electronics and Motion Control,Ma’anshan 243032,China)
出处 《控制与决策》 EI CSCD 北大核心 2021年第9期2085-2094,共10页 Control and Decision
基金 国家自然科学基金青年项目(61903003) 安徽省自然科学基金青年项目(2008085QE227) 安徽省高校自然科学重点研究项目(KJ2019A0051) 安徽省高校电力电子与运动控制重点实验室开放课题(PEMC201903)。
关键词 高维多目标优化 粒子群优化算法 双层档案 局部最优 R2指标 目标空间分解 many-objective optimization problems particle swarm optimizer bi-level archive local Pareto front R2 indicator objective space partition strategy
  • 相关文献

参考文献9

二级参考文献97

  • 1赵春祥,叶桂森.重介质选煤过程控制模型及控制算法的研究[J].煤炭学报,2000,25(z1):196-200. 被引量:21
  • 2雷德明,严新平,吴智铭.多目标混沌进化算法[J].电子学报,2006,34(6):1142-1145. 被引量:20
  • 3周勇,巩敦卫,张勇.混合性能指标优化问题的进化优化方法及应用[J].控制与决策,2007,22(3):352-356. 被引量:8
  • 4刘士新,宋健海,周山长.热轧带钢轧制批量计划优化模型及算法[J].控制理论与应用,2007,24(2):243-248. 被引量:16
  • 5DEB K, JAIN H. An improved NSGA-II procedure for many- objective optimization part I: solving problems with box con-straints [R]. Kanpur: Indian Institute of Technology, 2012: 2012009. 被引量:1
  • 6LIMBOURG E APONTE D. An optimizaiton algorithm for impre- cise multi-Objective problem function [C] //Proceedings of the IEEE International Conference on Evolutionary Computation. New York: IEEE, 2005, 1:459 - 466. 被引量:1
  • 7GONG D W, QIN N N, SUN X Y. Evolutionary optimization algo- rithm for multi-objective optimization problems with interval param- eters [C] //Proceedings of IEEE International Conference on Bio- Inspired Computing: Theories and Applications. Shanghai: IEEE, 2010:411-420. 被引量:1
  • 8MURATA T, TAKI A. Examination of the performance of objective reduction using correlation-based weighted-sum for many objective knapsack problems [C] //Proceedings of International Conference on Hybrid InteUigent Systems. Atlanta, GA: IEEE, 2010:175 - 180. 被引量:1
  • 9LYGOE R J, CARY M, FLEMING P J. A many-objective optimi- sation decision-making process applied to automotive diesel engine calibration [C] //Proceedings of International Conference on Simu- lated Evolution and Learning. Kanpur: Spl'inger, 2010:638 - 646. 被引量:1
  • 10SATO H, AGUIRRE H E, TANAKA K. Pareto partial dominance MOEA and hybrid archiving strategy included CDAS in many- objective optimization [C]//Proceedings of lEEE Congress on Evo- lutionary Computation. Barcelona: IEEE, 2010:1 - 8. 被引量:1

共引文献134

同被引文献65

引证文献5

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部