摘要
高压变频器功率器件的散热问题是制约设备性能、影响功率密度的关键。针对传统空冷和水冷散热方案存在的不足,本文展开蒸发冷却相变散热技术在大功率高压变频器上的应用研究。首先根据变频器功率模块的结构参数特点和热损耗计算,设计了高集成化的蒸发冷却冷板散热方案,并通过数值仿真和实验进行了验证。研究分析表明,相变冷板散热方案相比强迫风冷方案散热能将功率模块高度集成化,大幅提高体积功率密度;相比传统水冷板方案,相变冷板均温度均匀性更好,无泵实现自循环便于运维,且流量均匀性更好,更利于功率器件的安全稳定运行,另外采用的冷却介质具有绝缘性、安全性更高。
The heat dissipation problem of high voltage inverter power devices is the key to restrict the performance of equipment and affect the power density.In view of the shortcomings of traditional air cooling and water cooling schemes,this paper studies the application of evaporative cooling phase change cooling technology in high-power high-voltage inverter.Firstly,according to the structural parameters and heat loss calculation of the inverter power module,a highly integrated evaporative cooling cold plate cooling scheme is designed,and verified by numerical simulation and experiment.Research and analysis show that,compared with the forced air cooling scheme,the phase change cooling plate cooling scheme can highly integrate the power module and greatly improve the volume power density;moreorer,compared with the traditional water cooling plate scheme,the phase change cooling plate has better average temperature uniformity,self circulation without pump,convenient operation and maintenance,and better flow uniformity,which is more conducive to the safe and stable operation of power devices.In addition,the cooling medium has electric insulation and higher safety.
作者
石华林
熊斌
刘作坤
贾媛媛
顾国彪
SHI Hua-lin;XIONG Bin;LIU Zuo-kun;JIA Yuan-yuan;GU Guo-biao(Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;University of Chinese Academy of Sciences, Beijing 100049, China;Beijing Shougang International Engineering Technology Co., Ltd., Beijing 100043, China;Shanxi Chencheng Construction Engineering Co., Ltd., Yangquan 045000, China)
出处
《电工电能新技术》
CSCD
北大核心
2021年第6期73-80,共8页
Advanced Technology of Electrical Engineering and Energy
关键词
高压变频器
蒸发冷却技术
冷板
相变散热
high voltage inverter
evaporative cooling technology
cold plate
phase change heat dissipation