期刊文献+

改进神经网络的电子音乐辨识研究

Research on Electronic Music Identification Based on Improved Neural Network
下载PDF
导出
摘要 电子音乐辨识对电子音乐的融合和处理具有十分重要的意义,当前电子音乐辨识方法不能有效描述电子音乐包含的信息,使得电子音乐辨识错误率极高,实际应用价值较低,为了改善当前电子音乐辨识过程中存在的一些难题,以获得更优的电子音乐辨识结果为目标,提出了改进神经网络的电子音乐辨识方法。首先分析当前神经网络在电子音乐辨识建模过程中的缺陷,然后通过引入自适应遗传算法解决神经网络参数优化缺陷,最后将改进的神经网络应用于电子音乐辨识研究中,并与其它电子音乐辨识方法进行了对照测试,结果表明,相对于传统神经网络,改进神经网络的电子音乐辨识精度提升了10%左右,而且电子音乐辨识稳定更好,电子音乐辨识效率也得到了明显的改善,较好地克服了当前电子音乐辨识方法存在的不足,为电子音乐后续处理打下了良好的基础。 Electronic music identification is of great significance to the integration and processing of electronic music.The current electronic music identification methods cannot effectively describe the information contained in electronic music,which makes the electronic music identification error extremely high,and the practical application value is low.For improving the problems that in the curent electronic music identification process.and Aiming at obtaining better electronic music identification results,an electronic music identification model based on improved neural network is proposed.Firstly,the defects of the current neural network in the process of electronic music identification modeling are analyzed,and then an adaptive genetic algorithm is introduced to solve the defects of neural network parameter optimization.Finally,the improved neural network is applied to the research of electronic music identification,and compared with other methods of electronic music identification.The results show that the accuracy of electronic music identification is improved by about 10%,the stability of electronic music identification is better,and the efficiency of electronic music identification is also improved significantly,which overcomes the shortcomings of current electronic music identification methods,and lays a good foundation for the follow-up processing of electronic music.
作者 赵婕 ZHAO Jie(School of information Engineering, Shaanxi Polytechnic Institute, Xianyang 712000, China)
出处 《微型电脑应用》 2021年第6期129-131,135,共4页 Microcomputer Applications
关键词 电子音乐 建模与辨识 神经网络 参数优化 自适应遗传算法 electronic music modeling and identification neural network parameter optimization adaptive genetic algorithm
  • 相关文献

参考文献12

二级参考文献108

  • 1陈功,王振力,张建兵.基于短时能量的语音/音乐快速分类[J].电子技术应用,2006,32(1):53-55. 被引量:3
  • 2陈功,张雄伟.一种基于灰关联分析的语音/音乐分类方法[J].声学技术,2007,26(2):262-267. 被引量:8
  • 3SimonHaykin.神经网络与机器学习[M].申富饶,徐烨,译.北京:机械工业出版社,2011:269-295. 被引量:8
  • 4Yang Y-t-I, Lin Yu-Ching, Cheng H-T, et al. Toward Multi-mo- dal Music Emotion Classification[C]//Proceedings of the 9th Pacific Rim Conference on Multimedia. Berlin: Springer, 2008: 70-79. 被引量:1
  • 5Lu Qi, Chen Xiao-ou, Yang D, et al. Boosting For Multi-Modal Music Emotion[C]//ACM llth International Society for Music Information Retrieval Confe-rence. 2010:105-110. 被引量:1
  • 6Lin Yu-Ching, Yang Y-H, Chen H H, et al. Exploiting Genre for Music Emotion Classification[C]// IEEE International Confe- rence on Multimedia & Expo, New York, 2009 : 618-621. 被引量:1
  • 7Lu Lie, Liu Dan, Zhang Hong-jiang. Automatic Mood Detection and Tracking of Music Audio Signals [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006,14 (1) : 5-18. 被引量:1
  • 8Liu Dan, Lu Lie, Zhang Hong-iang. Automatie Music Mood De- tection from Acoustic Music Data[C]//Proceeding of Interna- tional Symposium on Music Information Retrieval. 2003 : 1-7. 被引量:1
  • 9Shi Yuan-yuan, Zhu Xuan, Kim H-G, et al. A tempo Feature via Modulation Spectrum Analysis and Its Application to Music E- motion Classification [C]//IEEE International Conference on Multimedia and Expo, Toronto Ont. 2006:1085-1088. 被引量:1
  • 10Yang Y-H, Liu Chia-Chu, Chen H H. Music Emotion Classifica-tion: A Fuzzy Approach[C] ACM International Conference on Multimedia. New York, 2006 : 81-84. 被引量:1

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部