期刊文献+

改进极限学习机的电子音乐分类模型 被引量:2

Electronic music classification model based on improved extreme learning machine
下载PDF
导出
摘要 针对传统模型无法准确实现电子音乐分类和识别的难题,提出改进极限学习机的电子音乐分类模型。首先对电子音乐数据进行采集,并提取其倒谱系数特征,并采用核主成分分析对特征进行筛选;然后采用遗传算法对极限学习机的参数进行选择,并用于构建电子音乐的分类器;最后采用多种类型的电子音乐进行仿真实验,改进极限学习机的电子音乐平均分类率达到了95%以上,电子音乐的错分率要远远低于当前其他电子音乐分类模型。实验结果验证了该电子音乐分类模型的可行性以及优越性。 It is difficult to class and recognize the electronic music with the traditional model accurately, a new electronic music classification model based on improved extreme learning machine is proposed. The electronic music data is collected to ex- tract the feature of the cepstrum coefficient. The kernel principal component analysis is used to screen the feature. The genetic al- gorithm is used to select the parameters of the extreme learning machine to construct the classifier of the electronic music. The polytype electronic music is adopted to carry out the simulation experiments. The average classification rate of the electronic mu- sic can reach up to 95% with the improved extreme learning machine, and the wrong classification rate of the electronic music is far lower than that of other electronic music classification models. The feasibility and superiority of the electronic music classi- fication model were verified with the experimental results.
作者 赵亮
出处 《现代电子技术》 北大核心 2017年第5期155-158,共4页 Modern Electronics Technique
关键词 音乐分类 核主成分分析 极限学习机 音乐特征 遗传算法 music classification kernel principal component analysis extreme learning machine music characteristic ge- netic algorithm
  • 相关文献

参考文献10

二级参考文献80

  • 1孙伟,聂飞,郭宝龙,潘玉.基于IPC的远距离光电实时转速测量系统的研究[J].计算机测量与控制,2005,13(3):232-234. 被引量:3
  • 2白亮,老松杨,陈剑赟,吴玲达.基于支持向量机的音频分类与分割[J].计算机科学,2005,32(4):87-90. 被引量:13
  • 3吕宁.单片机转速测量系统[J].电子技术(上海),2006,33(9):64-67. 被引量:9
  • 4Davis S B, Merrneistein P. Comparison of Parametric Representation for Monosyllable Word Recognition in Continuously Spoken Sentences[J]. IEEE Trans on Acoustics, Speech, and Signal Processing, 1980,28(4) :357-366. 被引量:1
  • 5Mubarak O M, Ambikairajah E, Epps J. Novel Features for Effective Speech and Music Discrimination[C]//Proc of the IEEE Int'l Conf on Engineering of Intelligent Systems, 2006 : 22-23. 被引量:1
  • 6Pinquier J, Andre-Obrecht R, Audio Indexing: Primary Components Retrieval Robust Classification in Audio Documents[J].Multimedia Tools and Applications, 2006,30(3) : 313-330. 被引量:1
  • 7Panagiotakis C, Tziritas G. A Speech/Music Discriminator Based on RMS and Zero-crossings[J].IEEE Trans on Multimedia, 2005,7(1) : 155-166. 被引量:1
  • 8Abu-EI-Quran A R, Goubran R A, Chan A D C. Adaptive Feature Selection for Speech/Music Classiflcation[C]//Proc of the IEEE Int't Workshop on Multimedia Signal Processing, 2006:212-216. 被引量:1
  • 9XU Changs-heng, Maddage,N C,XI Shao. Automatic music classification and summarization[J] .IEEE Transactions on Speech and Au-dio Processing,2005,13(3) :441 - 450. 被引量:1
  • 10Marques J, Momno P J. A study of musical instrument classification using gaussian mixture models and support vector machines[DB/ OL]. http://www, hpl. hp. com/techreports/Compaq - DEC/CRL - 99 - 4. pdf. 1999 - 06 - 10. 被引量:1

共引文献31

同被引文献21

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部