期刊文献+

基于节奏和韵律调制谱特征的音乐流派分类 被引量:5

Music Genre Classification Based on Modulation Spectrum Features of Rhythm and Rhyme
下载PDF
导出
摘要 音乐主要包括形成节奏的冲击成分和形成韵律的和声成分,直接从音乐信号中提取特征会受到这2种成分相互影响。利用节奏与和声在时频平面具有不同规律的特点,通过对音乐信号进行谱图滤波,分离出音乐中的打击成分与和声成分。对打击与和声谱图分别进行小波调制,得到表现音乐节奏和韵律谱规律的调制谱特征,将其作为音乐流派分类中的长时特征。仿真实验结果表明,分离后的打击与和声成分谱图清晰地表征了音乐节奏和韵律的特点和规律;对8类音乐流派提取打击与和声调制谱特征,经线性鉴别分析降维后利用支持向量机进行分类,分类准确率达到73.54%。 Music is mainly composed of percussive component and harmonic component,and the former forms the rhythm while the latter forms melody and harmony. Extracting features from the music samples directly are affected by the interaction between the two components. As the rhythm and harmony presenting different distributions in the timefrequency plane,the percussive component and the harmonic component can be separated by applying filtering on the spectrogram. It modulates the percussive and harmonic spectrograms with wavelet respectively and then gets the music rhythm and rhyme modulation spectrum features,which describes the long-term mid-level features of music genres.Experimental results show that the music rhythm and rhyme features represent feature and rule of rhythm and rhyme after the percussive and harmonic spectrogram separation. And the classification accuracy is 73.54% for eight music genresclassification applying this method with Linear Discriminant Analysis(LDA) and afterward Support Vector Machine(SVM).
作者 庄严 于凤芹
出处 《计算机工程》 CAS CSCD 北大核心 2015年第1期186-189,共4页 Computer Engineering
基金 国家自然科学基金资助项目(61075008)
关键词 谱图分离 中值滤波 小波调制谱 节奏和韵律 中级特征 音乐流派分类 spectrogram separation median filtering wavelet modulation spectrum rhythm and rhyme intermediate feature music genre classification
  • 相关文献

参考文献17

  • 1Michael A,Remco V.Content-based Music Information Retrieval:Current Directions and Future Challenges[J].Proceedings of the IEEE,2008,96(4):668-696. 被引量:1
  • 2Lee Chang-Hsing,Shih Jau-Ling.Fusion of Static and Transitional Information of Campestral and Spectral Features for Music Genre Classification[C]//Proceedings of IEEE Asia-Pacific Services Computing Conference.[S.l.]:IEEE Press,2008:751-756. 被引量:1
  • 3Anders M,Peter A.Temporal Feature Integration for Music Genre Classification[J].IEEE Transactions on Audio,Speech,and Language Processing,2007,15(5):1654-1664. 被引量:1
  • 4Lee Chang-Hsing,Shih Jau-Ling.Automatic Music Genre Classification Using Modulation Spectral Contrast Feature[C]//Proceedings of IEEE International Conference on Multimedia and Expo.[S.l.]:IEEE Press,2007:204-207. 被引量:1
  • 5Yannis P,Constantine K.Non-negative Multilinear Principal Component Analysis of Auditory Temporal Modulations for Music Genre Classification[J].IEEE Transactions on Audio,Speech,and Language Processing,2010,18(3):576-588. 被引量:1
  • 6Carlos P S,David R.Genre Classification of Music by Tonal Harmony[J].Intelligent Data Analysis,2010,14(5):533-545. 被引量:1
  • 7甄超,郑涛,许洁萍.基于音乐语义信息的音乐流派分类研究[C]//第五届全国信息检索学术会议论文集.上海:[出版者不详],2009. 被引量:1
  • 8Islam M K,Lee H J.Content-based Music Retrieval Using Beat Information[C]//Proceedings of the4th International Conference on Fuzzy Systems and Knowledge Discovery.[S.l.]:IEEE Computer Society,2007:317-321. 被引量:1
  • 9Poliner G E,Ellis D P W.Melody Transcription from Music Audio:Approaches and Evaluation[J].IEEE Transactions on Audio,Speech,and Language Processing,2007,15(4):1247-1256. 被引量:1
  • 10Durrieu J K,David B.A Musically Motivated Mid-level Representation for Estimation and Musical Audio Source Separation[J].IEEE Selected Topics in Signal Processing,2011,5(6):1180-1191. 被引量:1

二级参考文献9

  • 1William J. Pielemeier, Gregory H. Wakefield, and Mary H. Simoni. Time-frequency analysis of musical signals[J]. Proceedings of the IEEE, 1996, 84(9): 1216-1230. 被引量:1
  • 2Peter De Gersem, Bart De Moor, and Marc Moonen. Applications of the continuous wavelet transform in the processing of musical[J]. Proc. of the 13th International Conference on Digital Signal Processing (DSP97), 1997, 563-566. 被引量:1
  • 3Anssi P. Klapuri, Antti J. Eronen, and Jaakko T. Astola. Analysis of the meter of acoustic musical signals[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(1): 342-355. 被引量:1
  • 4Keren R. Zeevi Y Y, Chazan D. Multiresolution timefrequency analysis of polyphonic music[J]. IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (TFTS'98). 1998, 565-568. 被引量:1
  • 5Chien Yu-Ren, Jeng Shyh-Kang. An automatic transcription system with octave detection[J]. IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP), 2002, 1865-1868. 被引量:1
  • 6Karthikeyan Umapathy, Sridhar Krishnan, Shihab Jimaa, Multigroup classification of audio signals using time-frequency parameters[J]. IEEE Transactions on Multimedia 2005, 7(2): 308-315. 被引量:1
  • 7Mark A. Bartsch, Gregory H. Wakefield. Audio thumbnafling of popular music using chroina-based representations[J]. IEEE Transactions on Multimedia. 2005, 7(1): 96-104. 被引量:1
  • 8CAO Zheng, GUAN Shengxiao, WANG Zengfu. A real-time algorithm for music recognition based on wavelet transform[J]. Proceedings of the 6th World Congress on Intelligent Control and Automation, 2006, 9926-9929. 被引量:1
  • 9Sean M. Smith, Glen N. Williams. A visualization of music [J]. Proceedings of the 8th IEEE Visualization '97 Conference, 1997, 499-503. 被引量:1

共引文献2

同被引文献27

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部