期刊文献+

基于数据增强的分布式光伏电站群短期功率预测(一):方法框架与数据增强 被引量:28

Distributed Photovoltaic Station Cluster Gridding Short-term Power Forecasting Part Ⅰ:Methodology and Data Augmentation
下载PDF
导出
摘要 目前我国的分布式光伏短期功率预测多缺乏功率与气象要素的历史实测和预报数据,难以直接复制集中式光伏的成熟技术路线,现有无辐照预测路线误差较大。本系列论文分为上下两篇阐述一种基于数据增强的分布式光伏电站群预测技术。此文为上篇,研究数据增强技术,包括基于时空相关性的缺失功率数据重构方法和基于三维神经网络的辐照预测加密模型,实现了功率数据、关键气象变量的高分辨率网格覆盖,为下篇网格化精细预测奠定了基础。仿真结果表明,相较于现有方法精度有显著提高,并适用于小样本训练。 The short-term forecast of distributed solar generation in China is usually faced with the lack of historical and meteorological data on the power curve.As a result,it is almost impossible to copy the mature technology that has been widely used in the centralized PV stations.The pre-existing methods are designed without radical prediction,and not good enough in preciseness.This series of papers include two parts to propose the distributed PV cluster forecast technology based on data augmentation.Part Ⅰ here focuses on the data augmentation method,including the power curve reconfiguration based on the spatial-temporal relationship and the radical prediction density improvements using the 3 D convolution neutral network.In this way,the power curves and the key meteorological factors are covered matched on the to-be-predicted area grid,which provides a possibility for the elaborate prediction in Part II.Simulation has shown there are advances in accuracy comparing with the pre-existing methods,and the proposed method is suitable for small sample set training.
作者 乔颖 孙荣富 丁然 黎上强 鲁宗相 QIAO Ying;SUN Rongfu;DING Ran;LI Shangqiang;LU Zongxiang(State Key Lab of Control and Simulation of Power Systems and Generation Equipments(Dept.of Electrical Engineering,Tsinghua University),Haidian District,Beijing 100084,China;State Grid Jibei Electric Power Co.,Ltd.,Xicheng District,Beijing 100054,China)
出处 《电网技术》 EI CSCD 北大核心 2021年第5期1799-1808,共10页 Power System Technology
基金 国网冀北电力有限公司科技项目“冀北电网分布式电源监测、预测及运行分析技术研究”。
关键词 分布式光伏电站群 短期功率预测 数据增强 曲线重构 辐照加密 distributed PV stations short-term power forecasting data augmentation curve reconfiguration improving radical prediction density
  • 相关文献

参考文献16

二级参考文献237

  • 1戚军,张晓峰,张有兵,周文委.考虑阴影影响的光伏阵列仿真算法研究[J].中国电机工程学报,2012,32(32):131-138. 被引量:55
  • 2董雷,周文萍,张沛,刘广一,李伟迪.基于动态贝叶斯网络的光伏发电短期概率预测[J].中国电机工程学报,2013,33(S1):38-45. 被引量:76
  • 3戴欣平,马广,杨晓红.太阳能发电变频器驱动系统的最大功率追踪控制法[J].中国电机工程学报,2005,25(8):95-99. 被引量:67
  • 4虞和济.基于神经网络的智能诊断[M].北京:冶金工业出版社,2002.. 被引量:43
  • 5王长贵,王斯成.太阳能光伏发电应用技术(第二版)[M].北京:化学工业出版社,2009. 被引量:1
  • 6S I IZA ,O SAODAH ,S ZURAIDI,et al. Weather forecasting using photovnltaie system and neural network [C]. I,iverpool. Uniled Kingdom:Second International Conference on Computational Intelligence, 2010. 被引量:1
  • 7A YONA,T SENJYU,A Y SABER,et al. Application of Neural Network to 24-hour-Ahead Generating Power Forecasting for PV System [C]. Pittsburgh, PA Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21 st Century. 2008. 被引量:1
  • 8YING ZI LI ,JIN-CANG NIU, Forecast of power generation for grid-connected photovoltaic system Dased on markov chain [C]. Wuhan. China:Power and Energy Engineering Conference, APPEEC Asia-Pacific, 2009. 被引量:1
  • 9韩元佳.国家能源局再度上调太阳能发电装机容量目标[N].北京晨报,2013-01-30. 被引量:1
  • 10Pfister G,Mckenzie R L,Liley J B,et al.Cloud coverage based on all-sky imaging and its impact on surface solar irradiance[J].Journal of Applied Meteorology,2003,42(10):1421-1434. 被引量:1

共引文献606

同被引文献529

引证文献28

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部