期刊文献+

基于空间相关性的分布式光伏出力预测 被引量:20

Research on Prediction of Distributed Photovoltaic Output Considering Spatial Relevance
原文传递
导出
摘要 随着分布式光伏在配电网的渗透率不断上升,其出力波动将成为调度运行中不可忽略的一项不确定因素。基于同一地区光伏出力变化的相关性,提出一种基于空间相关性的分布式光伏出力预测方法。先对同一地区集中式、分布式光伏出力历史数据做无遮归一化,以无遮系数表征光伏出力不确定性;再由K-means聚类方法对天气情况分类,建立基于Copula函数的各类天气工况下光伏出力的相关性模型;最后根据集中式光伏出力信息实现分布式光伏出力预测。以我国北部某城市光伏电站数据为算例,验证了该方法的有效性。 With the increasing proportion of distributed photovoltaic (DPV) power in distribution network, the fluctuation of its pow er output w ill become a non-negligible uncertain factor in pow er grid dispatch and operation. On the basis of the correlation of photovoltaic pow er generation in one region,a prediction method for distributed photovoltaic output is proposed on the basis of spatial correlation. Firstly,the historical data of centralized and distributed photovoltaic output in the same region are normalized to uncovered coefficient w hich represents the randomness of photovoltaic output.Then,the w eather conditions are classified by K-means clustering. According to Copula theory,the correlation model of photovoltaic output under various w eather conditions is established. Finally,the distributed photovoltaic output is predicted according to the information of centralized photovoltaic output. The validity of the proposed method is verified by using an example of a photovoltaic pow er station in a city of northern China.
作者 张家安 王琨玥 陈建 郭凌旭 黄潇潇 范瑞卿 李志军 ZHANG Jiaan;WANG Kunyue;CHEN Jian;GUO Lingxu;HUANG Xiaoxiao;FAN Ruiqing;LI Zhijun(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300130,China;State Grid Tianjin Electric Power Company,Tianjin 300010,China)
出处 《电力建设》 北大核心 2020年第3期47-53,共7页 Electric Power Construction
关键词 分布式光伏 出力预测 空间相关性 COPULA distributed photovoltaic output prediction spatial relevance Copula
  • 相关文献

参考文献13

二级参考文献193

  • 1董雷,周文萍,张沛,刘广一,李伟迪.基于动态贝叶斯网络的光伏发电短期概率预测[J].中国电机工程学报,2013,33(S1):38-45. 被引量:76
  • 2陈志军.我国月晴空指数模型探讨[J].南京气象学院学报,2005,28(5):649-656. 被引量:5
  • 3杨秀媛,董征,唐宝,陈树勇.基于模糊聚类分析的无功电压控制分区[J].中国电机工程学报,2006,26(22):6-10. 被引量:78
  • 4汪海宁,苏建徽,丁明,张国荣.光伏并网功率调节系统[J].中国电机工程学报,2007,27(2):75-79. 被引量:116
  • 5冈萨雷斯.数字图像处理[M].阮秋琦,阮宇智,译.2版.北京:电子工业出版社,2007:427. 被引量:39
  • 6钱敏平 龚光鲁.随机过程论[M].北京:北京大学出版社,2000.. 被引量:8
  • 7虞和济.基于神经网络的智能诊断[M].北京:冶金工业出版社,2002.. 被引量:43
  • 8Md Habibur Rahman, Susumu Yamashiro.Novel distributed power generating system of PV-ECaSS using solar energy estimation[J].IEEE Transactions on Energy Conversion,2007,22(2):358-367. 被引量:1
  • 9CAI Tao,DUAN Shan-xu,CHEN Chang-song.Forecasting power output for grid-connected photovoltaic power system without using solar radiation measurement[C]// 2nd International Symposium on Power Electronics for Distributed Generation Systems (PEDG 2010),Hefei,China,2010. 被引量:1
  • 10Atsushi Yona,Tomonobu Senjyu,Ahmed Yousuf Saber,et al.Application of neural network to one-day-ahead 24 hours generating power forecasting for photovoltaic system[C]//2007 International Conference on Intelligent Systems Applications to Power Systems (ISAP),Toki Messe,Niigata,2007. 被引量:1

共引文献567

同被引文献355

引证文献20

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部