期刊文献+

基于Q学习算法的再生制动能量回收控制策略 被引量:2

Regenerative Braking Energy Recovery Control Strategy Based on Q Learning Algorithm
下载PDF
导出
摘要 针对前轴驱动混合动力汽车再生制动过程中电液制动力矩分配问题,提出基于Q学习算法的再生制动能量回收控制策略。文章以制动能量回收效率最大为优化目标,通过Q学习算法优化得到制动力矩分配系数,从而对前后轮机械摩擦制动力和再生制动力进行分配。并基于MATLAB/Simulink软件进行仿真验证,结果表明:与理想制动力分配策略相比,制动能量回收效率提升了6.5%。提出的控制策略能够在保证制动安全的前提下,进一步提高了制动能量回收效率,对于制动能量回收的研究具有重要意义。 Aiming at the problem of electro-hydraulic braking torque distribution in the regenerative braking process of front axle drive hybrid electric vehicles,regenerative braking energy recovery control strategy based on Q learning algorithm is proposed.This paper takes the maximum braking energy recovery efficiency as the optimization goal.By the Q learning algorithm,the braking torque distribution coefficients are obtained,thus the mechanical friction braking force and regenerative braking force are distributed.Based on MATLAB/Simulink software,the simulation model is established.The results show that compared with the ideal braking force distribution strategy,the braking energy recovery efficiency is increased by 6.5%,The proposed control strategy can further improve the efficiency of braking energy recovery under the premise of ensuring braking safety,which is of great significance to the research of braking energy recovery.
作者 马什鹏 尹燕莉 张刘锋 马永娟 黄学江 MA Shipeng;YIN Yanli;ZHANG Liufeng;MA Yongjuan;HUANG Xuejiang
出处 《汽车工程师》 2021年第5期52-55,共4页 Automotive Engineer
基金 重庆市教委科学技术研究项目(KJQN201800718)。
关键词 再生制动 Q学习算法 制动力矩分配 Regenerative braking Q learning algorithm Braking torque distribution
  • 相关文献

参考文献3

二级参考文献19

共引文献85

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部