期刊文献+

基于改进U-Net的磁共振成像脑肿瘤图像分割 被引量:11

Magnetic Resonance Imaging Brain Tumor Image Segmentation Based on Improved U-Net
原文传递
导出
摘要 针对医学图像分割中网络深度过深和上下文信息欠缺导致的分割精度降低等问题,提出了一种基于改进U-Net的磁共振成像(MRI)脑肿瘤图像分割算法。该算法通过嵌套残差模块和密集跳跃连接组成一种深度监督网络模型。为了减小编码路径和解码路径特征图之间的语义差距,将U-Net中的跳跃连接改为多类型的密集跳跃连接;为了解决网络过深导致的退化问题,加入残差模块,以防止网络梯度消失。实验结果表明,本算法分割肿瘤整体、肿瘤核心、增强肿瘤的Dice系数分别为0.88、0.84、0.80,满足临床应用的需求。 In view of the problems of deep network depth and lack of context information in medical image segmentation,which leads to the reduction of segmentation accuracy,an improved U-Net-based magnetic resonance imaging(MRI)brain tumor image segmentation algorithm is proposed in this paper.The algorithm forms a deep supervised network model by nesting residual block and dense skip connections.Change the skip connection in U-Net to multiple types of dense skip connection to reduce the semantic gap between the encoding path and the decoding path feature map;add a residual block to solve the degradation problem caused by too deep network to prevent the network gradient from disappearing.Experimental results show that the Dice coefficients of the algorithm for segmenting the whole tumor,tumor core,and enhanced tumor are 0.88,0.84,and 0.80,respectively,which meets the needs of clinical applications.
作者 牟海维 郭颖 全星慧 曹志民 韩建 Mu Haiwei;Guo Ying;Quan Xinghui;Cao Zhimin;Han Jian(School of Physics and Electrical Engineering,Northeast Petroleum University,Daqing,Heilongjiang 163318,China;Research and Development Center for Testing and Measurement Technology and Instrumentation,Heilongjiang Province Universities,Northeast Petroleum University,Daqing,Heilongjiang 163318,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第4期257-264,共8页 Laser & Optoelectronics Progress
基金 国家自然科学基金(51574087)。
关键词 图像处理 脑肿瘤分割 残差模块 密集跳跃连接 image processing brain tumor segmentation residual block dense skip connection
  • 相关文献

参考文献4

二级参考文献18

共引文献86

同被引文献72

引证文献11

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部