期刊文献+

基于协同表征的二部图矿石图像分割 被引量:6

Ore Image Segmentation by Bipartite Graph Based on Collaborative Representation
下载PDF
导出
摘要 二部图的图像分割算法同时考虑到超像素之间、像素与超像素之间的空间组织关系,对矿石图像分割具有较好的鲁棒性。在二部图的构造过程中,引入■_0稀疏表征识别方法,保证全局特性和语义分割结果,但增加了算法的复杂度,使运算开销过大。为此,提出一种基于协同表征的二部图图像分割算法,该算法在保证全局特性的同时考虑超像素之间的局部信息,对于色彩单一、碎片重叠、粘连的矿石图像分割鲁棒性较好。结合协同表征,在保证分割效果的同时,解决■_0范数造成的复杂度过高问题。对不同分割算法的仿真实验结果验证了该算法的有效性。 Image segmentation algorithm by bipartite graph considers the spatial organization relation between superpixels as well as pixel and superpixels,which is robust for ore image segmentation. This paper proposes a bipartite graph algorithm based on Collaborative Representation (CR), which is able to ensure global features and local information. It takes image segmentation as a bipartite graph partitioning problem and uses a superpixel segmentation to search for the most probable groups of superpixels. CR method can reduce the complexity of 0 normalized image segmentation algorithm. Besides it is robust for segmenting ore images which have monotonic color changes and overlapping fragments, and compares to different segmentation algorithm. Simulation results of different segmentation algorithms show the validity of the proposed algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第10期236-241,共6页 Computer Engineering
基金 国家自然科学基金资助项目(61170109) 浙江省自然科学基金资助项目(LY14F030022 LY13F020015) 浙江省科技厅基金资助项目(2015C31095)
关键词 图像分割 超像素 协同表征 二部图 谱聚类 image segmentation superpixel Collaborative Representation (CR) bipartite graph spectral clustering
  • 相关文献

参考文献20

  • 1胡学刚,孙慧芬,王顺.一种新的基于图论的图像分割算法[J].四川大学学报(工程科学版),2010,42(1):138-142. 被引量:13
  • 2杨帆,廖庆敏.基于图论的图像分割算法的分析与研究[J].电视技术,2006,30(7):80-83. 被引量:16
  • 3Felzenszwalb P F, Huttenlocher D P. Efficient Graph- based Image Segmentation [ J] International Journal of Computer Vision, 2004,59 ( 2 ) : 167-181. 被引量:1
  • 4Koen E A,Jasper R R, et al. Segmentation as Selective Search for Object Recognition [C ]//Proceedings of IEEE ICCV ' I 1. Barcelona, Spain: IEEE Press, 2011 : 1879-1886. 被引量:1
  • 5Ren Xiaofeng,Malik J. Learning a Classification Model for Segmentation [ C ]//Proceedings of the 9th IEEE Inter- national Conference on Computer Vision. Washington D. C., USA: IEEE Computer Society ,2003 : 10-17. 被引量:1
  • 6Li Zhenguo, Wu Xiaoming, Chang Shih Fu. Segmentation Using Superpixels: A Bipartite Graph Partitioning App- roach [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE Press ,2012:789-796. 被引量:1
  • 7Wang Xiaofang, Li Huibin. A Graph-cut Approach to Image Segmentation Using an Affinity Graph Based on 0-sparse Representation of Features [ C ]//Proceedings of the 20th IEEE International Conference on Image Processing. Melbourne, Australia: IEEE Press, 2013: 4019-4023. 被引量:1
  • 8庞晓敏,闵子建,阚江明.基于HSI和LAB颜色空间的彩色图像分割[J].广西大学学报(自然科学版),2011,36(6):976-980. 被引量:77
  • 9Lowe D. Object Recognition from Local Scale-invariant Features [ C ]//Proceedings of the 7th IEEE International Conference on Computer Vision. Washington D. C., USA : IEEE Press, 1999 : 1150-1157. 被引量:1
  • 10Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31 (2) :210-227. 被引量:1

二级参考文献50

  • 1王泽兵,杨朝晖.彩色图像分割技术研究[J].电视技术,2005,29(4):20-24. 被引量:20
  • 2孙业明,关山,牛海波.基于小波变换的针叶苗木彩色图像分割[J].东北电力学院学报,2005,25(6):9-13. 被引量:2
  • 3陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:58
  • 4Shi J, Malik J. Normalized cuts and image segmentation [ J ]. IEEE Trans on PAKI ,2000 ,22 ( 8 ): 888 - 905. 被引量:1
  • 5Wang S, Siskind J M. Image segmentation with ratio cut [ J ]. IEEE Trans on PAKI ,2003 ,25 ( 6): 675 - 690. 被引量:1
  • 6Grady I, Funka-Lea G. Multi-label image segmentation for medical application based on graph-theoretic electrical potentials [ M ]. Springer,2004, LNCS 3117:230 - 245. 被引量:1
  • 7Park J, Zha H, Kasturi R. Spectral clustering for robust motion segmentation [ M ]. Springer, 2004, LNCS 3024 : 390 - 401. 被引量:1
  • 8Malik J,Belongie S, Leung T,et al. Contour and texture analysis for image segmentation[ J]. Intl Journal of Computer Vision, 2000,5( 1 ) :7 -27. 被引量:1
  • 9Hermes L,Buhmann J M. Semi-supervised image segmentation by parametric distributional clustering [ C]//Energy Minimization Methods in Computer Vision and Pattern Recognition. Springer,2003, LNCS 2683:229 - 245. 被引量:1
  • 10Wu Z, Leahy R. An optimal graph theoretic approach to data clustering: theory and its application to image segmentation [J]. IEEE Trans on PAMI,1993,15(11) :1101 -1113. 被引量:1

共引文献137

同被引文献37

引证文献6

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部