期刊文献+

一种基于深度网络的胶带煤流粒度估计方法 被引量:2

A deep-neural network based method for coal granularity estimation on coal belt conveyor
下载PDF
导出
摘要 虽然基于机器学习的粒度估计方法在矿物领域得到了广泛应用,然而由于煤炭的物理特性,造成其在图像中边缘信息不足,难以检测。因此当前胶带煤流的粒度估计仍然采用人工方式进行。针对人工巡检效率低,无客观量化标准的现状,提出一种旨在平衡光照分布的图像增强方法,并构造SSD-ResNet50深度网络用于检测胶带中块状煤,估计煤流粒度。首先,利用一种非线性自适应直方图均衡化与改进中值滤波的图像增强方法增强胶带上物料之间的区分度,提高暗区煤块的可分辨性。然后,提出SSD-ResNet50深度网络结构对块状物料进行检测,评估块状物料的粒度信息。根据实验结果,该方法检测准确度高达88.65%,单张图片的推理时间为160 ms。可以有效实时估计胶带煤流粒度的组成信息,提升巡检效率,达到自动估计胶带煤流粒度的目的。 Granularity estimation methods based on machine learning for ores have been widely used.However,due to the physical characteristics of coal,the edge information in the image is insufficient and difficult to detect.Currently,the coal granularity estimation on the belt conveyor is still carried out manually.To deal with two key issues in current situation,i.e.,low efficiency and no objective quantitative standard,an image enhancement method to balance the illumination in an image is proposed.Meanwhile,a deep-neural network named SSD-ResNet 50 is constructed to estimate the coal granularity on belt conveyor.Firstly,an image enhancement method based on nonlinear adaptive histogram equalization and improved median filter is used to enhance the discrimination between coal on the belt and improve the distinguishability of blocky coal in dark zones.Secondly,detect the block materials based on the proposed SSD-ResNet 50 to estimate the coal granularity on belt conveyor.From the experimental results,the detection accuracy of this method is 88.65%,and the reasoning time of a single picture is 160ms.It can effectively estimate the granularity for belt coal flow in real time,improve the inspection efficiency,and achieve the purpose of automatic granularity estimation for belt coal flow.
作者 张卿 冯化一 张虎平 楚遵勇 王佳乐 ZHANG Qing;FENG Hua-yi;ZHANG Hu-ping;CHU Zun-yong;WANG Jia-le(Guodian Jiantou Inner Mongolia Energy Co.,Ltd,Erdos,Inner Mongolia 017000,China;Tianjin Meiteng Technology Co.,Ltd,Tianjin 300000,China)
出处 《煤炭加工与综合利用》 CAS 2022年第7期49-54,共6页 Coal Processing & Comprehensive Utilization
关键词 煤流粒度估计 深度网络 图像增强 工矿智能化 coal granularity estimation deep-neural network image enhancement industrial and mining intelligence
  • 相关文献

参考文献16

二级参考文献108

共引文献103

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部