期刊文献+

基于核磁共振图像的脑肿瘤分割方法研究 被引量:5

Brain tumor segmentation based on magnetic resonance images
下载PDF
导出
摘要 利用脑肿瘤核磁共振(Magnetic resonance,MR)图像提供的关于肿瘤和脑组织的形状、大小与定位等信息准确地分割出脑肿瘤区域,对监测脑肿瘤患者的肿瘤生长或缩小、制定手术或放化疗计划都起着重要的作用。探讨了脑肿瘤MR图像分割的背景与意义,整理了脑肿瘤分割方法中常用的评估指标以及实验数据库的发展过程。基于脑肿瘤MR图像的特点讨论了脑肿瘤分割的难点,并从MR成像缺陷、脑组织解剖结构以及脑肿瘤的复杂性等方面进行归纳。对脑肿瘤分割方法的分类以及常见的分割方法进行了研究,分析了基于图论的分割方法、基于可形变模型的分割方法以及基于机器学习的分割方法及其进展。最后,结合脑肿瘤分割中存在的问题对未来的研究工作进行展望。 By using the information about the brain tissues and tumors provided by the magnetic resonance(MR)images,the brain tumor regions can be segmented from the images,which plays an important role in monitoring the tumor growth or shrinking and formulating surgery or radiotherapy and chemotherapy plans.The background and significance of brain tumor MR image segmentation are introduced,and the common evaluation indicators of brain tumor segmentation methods and the development of experimental databases are sorted out.Based on the characteristics of brain tumor MR images,the difficulties of brain tumor segmentation are discussed and summarized from the aspects of MR imaging defects,brain tissue structure and the complexity of brain tumor.Then,the paper discusses the classification of brain tumor segmentation methods and studies common segmentation methods,focusing on the analysis of the graph-based methods,the deformable models-based methods and the machine learning-based methods as well as their progress.Finally,combined with the problems existing in brain tumor segmentation,the future research work is prospected.
作者 葛婷 詹天明 李勤丰 牟善祥 Ge Ting;Zhan Tianming;Li Qinfeng;Mu Shanxiang(School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;School of Sciences,Jinling Institute of Technology,Nanjing 211169,China;School of Information Engineering,Nanjing Audit University,Nanjing 211815,China)
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2021年第2期179-188,共10页 Journal of Nanjing University of Science and Technology
关键词 脑肿瘤 核磁共振成像 脑肿瘤分割 医学图像分割 图论 水平集 模糊C-均值 人工神经网络 核方法 brain tumor magnetic resonance image brain tumor segmentation medical image segmentation brain tumor segmentation assessment graph theory level set fuzzy C-means artificial neural networks kernel method
  • 相关文献

参考文献5

二级参考文献43

  • 1高丽,杨树元,夏杰,王诗俊,梁军利,李海强.基于标记的Watershed图像分割新算法[J].电子学报,2006,34(11):2018-2023. 被引量:34
  • 2Kass M,Witkin A,Terzopoulos D.Snakes:Active contour models[J].Int J Comput Vis,1987,1(4):321-331. 被引量:1
  • 3Cohen L D,Cohen I.Finite-element methods for active contour models and balloons for 2-D and 3-D images[J].IEEE Trans Pattern Anal Mach Intell,1993,15 (11):1131-1147. 被引量:1
  • 4Xu Chenyang,Prince J L.Snakes,shapes,and gradient vector flow[J].IEEE Trans of Image Processing,1998,7(3):359-369. 被引量:1
  • 5Wang Jiankang,Li Xiaobo.A content-guided searching algorithm for balloons[J].Pattern Recognition,2003,36(1):205-215. 被引量:1
  • 6Velascoa F A,L M J.Growing Snakes:Active contours for complex topologies[J].Pattern Recognition,2003,36 (2):475-482. 被引量:1
  • 7Aubert G,Vese L.A variational method in image recovery [J].SIAM J Numer Anal,1997,34(5):1948-1979. 被引量:1
  • 8Weickert J,Ter Haar Romeny B,Viergever M.Efficient and reliable schemes for nonlinear diffusion filtering[J].IEEE Trans on Image Processing,1998,7(3):398-410. 被引量:1
  • 9Zhang Yu-Jin. Image Segmentation. Beijing: Science Press, 2001 (in Chinese)(章毓晋.图像分割.北京:科学出版社,2001) 被引量:1
  • 10Castleman K.R.. Digital Image Processing. New Jersey: Prentice Hall, 1996 被引量:1

共引文献51

同被引文献22

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部