期刊文献+

采用深度学习方法的非正面表情识别综述 被引量:7

Survey of Non-frontal Facial Expression Recognition by Using Deep Learning Methods
下载PDF
导出
摘要 2017年人工智能正式升级为中国国家战略,作为人工智能领域中重要的研究方向,人脸表情识别受到了国内外研究者们的广泛关注。然而传统的人脸表情识别技术无法适应自然环境下的表情识别需求。因此非正面人脸表情识别方法成为实现表情识别技术实用化突破的重点。但是现有的非正面表情识别研究面临很多困难:头部偏转不仅造成了识别图像的扭曲,而且还遮挡了部分人脸区域,严重干扰了表情特征的提取与识别。有鉴于此,研究者们将深度学习技术与非正面表情识别相结合,依靠非正面表情图像的深度信息,实现算法识别能力的提升。综述详细介绍了深度神经网络的结构,对最新的深度学习神经网络研究方法进行分类对比,同时对未来的研究和挑战做了展望。 In 2017,artificial intelligence was officially upgraded to China’s national strategy.As an important research direction in the field of artificial intelligence,facial expression recognition has received extensive attention from domestic and foreign researchers.However,the traditional facial expression recognition technology cannot adapt the requirements of facial expression recognition in the natural environment.Therefore,non-frontal facial expression recognition methods have become the focus of realizing breakthroughs in the practical use of expression recognition technology.However,the existing research on non-frontal expression recognition faces many difficulties:the head deflection not only causes the distortion of the recognition image,but also partially occludes the face area,which seriously interferes with the extraction and recognition of expression features.In view of this,researchers combined deep learning technology with non-frontal facial expression recognition,relying on the depth information of non-frontal facial expression images to achieve the improvement of algorithm recognition capabilities.This survey introduces the structure of deep neural networks in detail,and compares the latest research methods of deep learning neural networks,meanwhile looks forward to future research and challenges.
作者 蒋斌 钟瑞 张秋闻 张焕龙 JIANG Bin;ZHONG Rui;ZHANG Qiuwen;ZHANG Huanlong(College of Computer and Communication Engineering,Zhengzhou University of Light Industry,Zhengzhou 450001,China;College of Electric and Information Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第8期48-61,共14页 Computer Engineering and Applications
基金 国家自然科学基金(61702464,61771432,61873246) 河南省高等学校重点科研项目(16A520028) 郑州轻工业学院博士科研基金(2014BSJJ077)。
关键词 非正面表情识别 深度学习 神经网络 non-frontal facial expression recognition deep learning neural network
  • 相关文献

参考文献8

二级参考文献56

  • 1Picard R W.Affective computing[M].Cambridge,MA:MIT Press,1997 被引量:1
  • 2Ralph Gross.Face databases[C]// Li S,Jain A.Handbook of face recognition.New York:Springer-Verlag,2005 被引量:1
  • 3Ekman P,Friesen W.Constants across cultures in the face and emotion[J].Journal of Personality and Social Psychology,1971,17(2):124-129 被引量:1
  • 4Black M J,Yacoob Y.Recognizing facial expressions in image sequences using local parameterized models of image motion[J].International Journal of Computer Vision,1997,25(1):23-48 被引量:1
  • 5Lyons Michael J,Shigeru Akamatsu,et al.Coding facial expressions with gabor wavelets[C]// Third IEEE International Conference on Automatic Face and Gesture Recognition.Nara:IEEE Computer Society,1998:200-205 被引量:1
  • 6Kanade T,Cohn J,Tian Y L.Comprehensive database for facial expression analysis[C]// Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition.Grenoble:IEEE Computer Society,2000:46-53 被引量:1
  • 7Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces:vs.fisherfaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720 被引量:1
  • 8Sim Terence,Baker Simon,Bsat Maan.The CMU pose,illumination,and expression (PIE) database[C]// Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition.Washington:IEEE Computer Society,2002:46-51 被引量:1
  • 9Martinez A R,Benavente R.The AR face database[R].Computer Vision Center (CVC) Technical Report #24,1998 被引量:1
  • 10Hara F,Kobayashi H.Computer graphics for expressing robot-artificial emotions[C]// Proceedings of Robot and Human Communication.Tokyo:IEEE International Workshop,1992:155-160 被引量:1

共引文献536

同被引文献70

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部