期刊文献+

基于CNN和HOG双路特征融合的人脸表情识别 被引量:17

CNN and HOG Dual-Path Feature Fusion for Face Expression Recognition
原文传递
导出
摘要 为了避免传统表情识别方法中复杂的特征手动提取过程,同时能够提取到更多的表情特征,本文提出一种双路特征融合模型,将卷积神经网络(CNN)和方向梯度直方图(HOG)方法结合起来进行研究.在第一条通道上,对人脸表情图像进行归一化预处理,并使用可训练的卷积核提取隐式特征;在第二条通道上,提取出人脸面部表情的HOG特征,然后输入到卷积神经网络中的全连接层上;最后将融合特征传递至输出层,采用Softmax分类器进行识别并输出结果.本文在FER2013和CK+表情数据库上进行实验,结果验证了方法的有效性. In order to avoid the complex manual feature extraction process in traditional facial expression recognition methods and to extract more facial features,we propose a Dual-Path Feature Fusion model that combines Convolutional Neural Network(CNN)with Histogram of Oriented Gradient(HOG).In the first channel,the facial expression image is normalized,and the trainable convolution kernel is used to extract the implicit features.In the second channel,the HOG of facial expression are extracted and transmitted to the full connection layer of CNN.Finally,the fusion features are transferred to the output layer,and the recognition results are obtained via the Softmax classifier.This paper conducted an experiment on FER2013&CK+database,the results verify that the method presented is effective.
作者 丁名都 李琳 DING Mingdu;LI Lin(College of Optoelectronic Information and Computer Engineering,Shanghai University of Science and Technology,Shanghai 200093,China)
出处 《信息与控制》 CSCD 北大核心 2020年第1期47-54,共8页 Information and Control
基金 国家自然科学基金资助项目(61673277).
关键词 表情识别 双路特征融合 卷积神经网络 方向梯度直方图 expression recognition dual-path feature fusion convolutional neural network histogram of oriented gradient
  • 相关文献

参考文献8

二级参考文献169

  • 1薛雨丽,毛峡,张帆.BHU人脸表情数据库的设计与实现[J].北京航空航天大学学报,2007,33(2):224-228. 被引量:20
  • 2袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,1999.. 被引量:47
  • 3Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces: vs. fisherfaces: recognition using class specific linear projection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720. 被引量:1
  • 4Sire T, Baker S, Bsat M. The CMU pose, illumination, and expression (PIE) database [ A ] . In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition [C] , Washington, DC, USA, 2002: 46-51. 被引量:1
  • 5Martinez A M, Benavente R. The AIR face database [ R]. Technical Report 24, The Computer Vision Center (CVC), Barcelona, Spain, 1998. 被引量:1
  • 6Hwang B W, Rob M C, Lee S W. Performance evaluation of face recognition algorithms on Asian face database [ A ]. In: Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition [ C ], Seoul, South Korea, 2004 : 278-283. 被引量:1
  • 7Gau W, Cao B, Sban S, et al. The CAS-PEAL large-scale chinese face database and baseline evaluations [ J ]. IEEE Transactions on Systems, Man and Cybernetics, Part A, 2008, 38( 1 ) : 149-161. 被引量:1
  • 8Pantic M, Rothkrantz L J M. Automatic analysis of facial expressions: the state of the art [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 ( 12 ) : 1424-1446. 被引量:1
  • 9Fasel B, Luettin J. Automatic facial expression analysis: a survey [ J]. Pattern Recognition, 2003, 36 ( 1 ) : 259-275. 被引量:1
  • 10Essa I, Pentland A. Coding, analysis, interpretation, and recognition of facial expressions [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 757-763. 被引量:1

共引文献430

同被引文献171

引证文献17

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部