期刊文献+

基于混合聚类与融合用户属性特征的协同过滤推荐算法 被引量:9

Collaborative filtering recommendation algorithm based on hybrid clustering and fusion of user attribute features
下载PDF
导出
摘要 针对协同过滤推荐算法存在的推荐质量低、推荐效率低、冷启动等问题,提出一种基于混合聚类与融合用户属性特征的协同过滤推荐算法。根据用户属性信息,建立Canopy+K-means的混合聚类模型,采用该模型对所有用户进行聚类;生成多个聚类簇,在每个簇中结合用户属性特征,形成一种新的相似度计算模型,通过该模型找到目标用户的最近邻居,以此产生推荐列表进而实现推荐。在MovieLens数据集上进行的实验结果表明,此算法能够在提高推荐效率和推荐准确性的同时缩短算法运行时间,解决冷启动问题。 In allusion to the problems of low recommendation quality,low recommendation efficiency and cold startup in the collaborative filtering recommendation algorithm, a collaborative filtering recommendation algorithm based on hybrid clustering and fusion of user attribute features is proposed. A Canopy+K-means hybrid clustering model is established according to the user attribute information,which is used to cluster all users,so as to generate multiple clustering clusters. The user attribute feature is combined in each cluster to form a new similarity calculation model,by which the nearest neighbors of the target user is found,so that the recommendation list is generated to achieve the recommendations. The experimental results produced on the MovieLens datasets show that this algorithm can shorten the algorithm operation time and solve the cold start problem while improving the recommendation efficiency and recommendation accuracy.
作者 王蓉 刘宇红 张荣芬 WANG Rong;LIU Yuhong;ZHANG Rongfen(College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
出处 《现代电子技术》 2021年第6期179-182,共4页 Modern Electronics Technique
基金 贵州省科技计划项目([2016]5707)。
关键词 协同过滤推荐算法 混合聚类 用户属性特征 相似度计算 特征相似性 算法对比 collaborative filtering algorithm hybrid clustering user attribute feature similarity calculation feature similarity algorithm comparison
  • 相关文献

参考文献12

二级参考文献106

  • 1郭庆琳,吴克河,吴慧芳,李存斌.基于文本聚类的多文档自动文摘研究[J].计算机研究与发展,2007,44(z2):140-144. 被引量:5
  • 2刘远超,王晓龙,徐志明,关毅.文档聚类综述[J].中文信息学报,2006,20(3):55-62. 被引量:65
  • 3赵世奇,刘挺,李生.一种基于主题的文本聚类方法[J].中文信息学报,2007,21(2):58-62. 被引量:23
  • 4孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1079
  • 5Xue G R,Lin C,Yang Q,et al.Scalable collaborative filtering using clusterbased smoothing[C]//Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,NY,USA:ACM,2005. 被引量:1
  • 6Zhao Z,Shang M.User-based collaborative-filtering recommendation algorithms on hadoop[C]//Third International Conference on Knowledge Discovery and Data Mining,2010:478-481. 被引量:1
  • 7Pan R,Zhou Y,Cao B,et al.One-class collaborative filtering[C]//Proceedings of the Eighth IEEE International Conference on Data Mining,2008:502-511. 被引量:1
  • 8Pan R,Martin S.Mind the gaps:weighting the unknown in large-scale one-class collaborative filtering[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2009:667-676. 被引量:1
  • 9White T.Hadoop:the definitive guide[M].3rd ed.USA:O’Reilly Media,2012. 被引量:1
  • 10Sun Z,Li T,Rishe N.Large-scale matrix factorization using Map Reduce[C]//2010 IEEE International Conference on Data Mining Workshops(ICDMW),2010:1242-1248. 被引量:1

共引文献104

同被引文献74

引证文献9

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部