期刊文献+

基于相似用户索引和ALS矩阵分解的推荐算法研究 被引量:3

ALS-based matrix factorization recommendation algorithm with similar user index
下载PDF
导出
摘要 针对交替最小二乘法(ALS)在处理大数据集时所面临的处理速度和计算资源问题,提出了基于相似用户索引的分布式矩阵分解推荐算法。首先算法基于用户的评分行为找到用户之间的最近邻,然后使用Spark平台运行提出的算法,并产生推荐。在GroupLens网站上提供的MovieLens数据集上进行仿真实验,实验结果表明,提出的算法能够有效解决ALS对于大数据集运行效率低及在云环境中可扩展性较差的问题。 In order to solve the bottleneck problems of processing speed and resource allocation of Alternating Least Squares (ALS), a distributed parallel matrix factorization recommendation approach with similar user index was proposed. First, the approach found nearest neighbors among the users based on their ratings; Then, Spark was employed to implement the proposed approach, and the recommendation to the user is produced. Simulate experiments in MovieLens datasets provided by GroupLens website show that the proposed algorithm can resolve the issue of low execution efficiency of ALS for large-scale datasets and the worse scalability in clouds.
出处 《陕西理工学院学报(自然科学版)》 2016年第6期47-52,共6页 Journal of Shananxi University of Technology:Natural Science Edition
基金 云南省教育厅科学研究基金资助项目(2014Y145)
关键词 交替最小二乘法 最近邻 推荐算法 SPARK alternating least squares nearest neighbors recommendation algorith Spark
  • 相关文献

参考文献2

二级参考文献27

  • 1Xue G R,Lin C,Yang Q,et al.Scalable collaborative filtering using clusterbased smoothing[C]//Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,NY,USA:ACM,2005. 被引量:1
  • 2Zhao Z,Shang M.User-based collaborative-filtering recommendation algorithms on hadoop[C]//Third International Conference on Knowledge Discovery and Data Mining,2010:478-481. 被引量:1
  • 3Pan R,Zhou Y,Cao B,et al.One-class collaborative filtering[C]//Proceedings of the Eighth IEEE International Conference on Data Mining,2008:502-511. 被引量:1
  • 4Pan R,Martin S.Mind the gaps:weighting the unknown in large-scale one-class collaborative filtering[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2009:667-676. 被引量:1
  • 5White T.Hadoop:the definitive guide[M].3rd ed.USA:O’Reilly Media,2012. 被引量:1
  • 6Sun Z,Li T,Rishe N.Large-scale matrix factorization using Map Reduce[C]//2010 IEEE International Conference on Data Mining Workshops(ICDMW),2010:1242-1248. 被引量:1
  • 7Jiang J,Lu J,Zhang G,et al.Scaling-up item-based collaborative filtering recommendation algorithm based on hadoop[C]//2011 IEEE World Congress on Services(SERVICES),2011:490-497. 被引量:1
  • 8Zheng S, Wang W H,Ford J,et al. Learning from incompleteratings using non-negative matrix factorization [C] // Ghosh J,ed. Proc. of the 6 th SIAM Conf. on Data Mining. Bethesda : SI-AM, 2006:549-553. 被引量:1
  • 9Anand D,Bharadwaj K K. Utilizing various sparsity measuresfor enhancing accuracy of collaborative recommender systemsbased on local and global similarities [J]. Expert Systems withApplications,2011,38(5): 5101-5109. 被引量:1
  • 10Goldberg K. Roeder T, Gupta D,et al. Eigentaste: a constanttime collaborative filtering algorithm [J]. Information Retrieval,2001,4(2):133-151. 被引量:1

共引文献32

同被引文献21

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部