期刊文献+

基于项目综合相似度的协同过滤算法 被引量:13

Collaborative filtering algorithm based on item complex similarity
下载PDF
导出
摘要 提出了一种基于项目综合相似度的协同过滤算法。综合相似度是项目相似度和类别相似度进行加权,加权方式是从热能学中协同计算燃烧传热量的高温辐射换热综合发射率ε公式比拟得出,两者均是计算综合系数,在计算综合系数中可以通用。实验结果表明,在推荐不同的前N个项目的实验中,用新方法得到的准确率高于传统方法;在固定推荐数目改变最近邻的实验中,用新方法得到的准确率高于传统方法,因此可以得出结论:基于项目综合相似度的协同过滤算法可以提高计算准确性,提高推荐质量。 Abstract : Proposing a new collaborative filtering algorithm based complex similarity of the item. The similarity is an item simi- larity and category similarity weighting. It derived the algorithm from the energy science emissivity e formula which came from the collaborative computing combustion heat of the energy science. Both of them wei'e calculated complex coefficient which could be common in the calculation of the coefficient. Experimental results show that the accuracy obtains with the new method is higher than traditional methods in the experiments of recommending N items. A higher accuracy obtains by using a new method in the fix recommendation and change numbers of the nearest neighbors in the experiment. Therefore it can be conclu- ded that using the complex similarity based the item can improve the accuracy and improve the quality of recommendation.
出处 《计算机应用研究》 CSCD 北大核心 2014年第2期398-400,共3页 Application Research of Computers
关键词 协同过滤 项目相似度 类别相似度 综合相似度 发射率 collaborative filtering item similarity category similarity complex similarity emissivity
  • 相关文献

参考文献10

二级参考文献34

共引文献480

同被引文献114

  • 1高旻,吴中福.基于个性化情境和项目的协同推荐研究[J].东南大学学报(自然科学版),2009,39(S1):27-31. 被引量:8
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:147
  • 3刘平峰,聂规划,陈冬林.电子商务推荐系统研究综述[J].情报杂志,2007,26(9):46-50. 被引量:35
  • 4刘勇.基于项目相似度计算改进的协同过滤算法[J].商场现代化,2007(11S):84-85. 被引量:3
  • 5Jannach D,Zanker M,Felfernig A.推荐系统[M].蒋凡,译.北京:人民邮电出版社,2013. 被引量:6
  • 6Goossen F, Ijntema W, Frasincar F, et al. News Personaliza-tion Using the CF-IDF Semantic Recommender [C]. In: Proceedings of the 2011 International Conference on Web Intelligence, Mining and Semantics, Sogndal, Norway. 2011: 10-21. 被引量:1
  • 7Koren Y.Factorization Meets the Neighborhood:A Multifaceted Collaborative Filtering Model[C]//Pro-ceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2008:426-434. 被引量:1
  • 8Luo Xin,Liu Huijun,Gou Gaopeng,et al.A Parallel Matrix Factorization Based Recommender by Alternating Stochastic Gradient Decent[J].Engineering Applications of Artificial Intelligence,2012,25(5):1403-1412. 被引量:1
  • 9Wang Jun,de Vries A P,Reinders M J T.Unifying User-based and Item-based Collaborative Filtering Approaches by Similarity Fusion[C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2006:501-508. 被引量:1
  • 10Baralis E,Garza P.Item Selection for Associative Classification[J].International Journal of Intelligent Systems,2012,27(3):279-299. 被引量:1

引证文献13

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部