期刊文献+

通过相似度支持度优化基于K近邻的协同过滤算法 被引量:126

The Effect of Similarity Support in K-Nearest-Neighborhood Based Collaborative Filtering
下载PDF
导出
摘要 个性化推荐系统能基于用户个人兴趣为用户提供定制信息.此类系统通常使用协同过滤技术实现,其中一种广泛使用的经典模型是基于用户评分相似度的k近邻模型.使用k近邻模型需要预先计算出用户或者项目的k个最近邻居,k值过大时会导致计算量过大而影响推荐产生的实时性,而k值过小则会导致推荐精度下降.为解决此问题,该文中提出了一种新的最近邻度量——相似度支持度.基于相似度支持度,该文提出了数种能够在保持推荐精度和密度的前提下维持合理规模的k近邻的策略.在真实大规模数据集上的实验结果表明,相比传统算法,该文提出的策略能够在保证推荐精度的前提下大幅降低计算复杂度. Recommender systems which can provide people with personalized suggestions usually rely on Collaborative Filtering(CF).A classical approach to CF is based on k-nearest-neighborhood(kNN) model,where the most important task is constructing the kNN sets for involved users or items.However,when constructing kNN sets,there is a dilemma to decide the value of k —A too small value will lead to poor recommendation performance,whereas a too large one will result in unacceptable computational complexity.In this work the authors first empirically validated that the suitable value of k in kNN based CF was affected by the number of the totally involved entities,and then focused on improving the quality of the kNN sets in kNN based CF for providing high recommendation performance as well as maintaining suitable kNN set size.To achieve this objective,the authors propose a novel kNN metric named Similarity Support(SS).By taking SS into consideration during the kNN building process,the authors design a series of strategies for optimizing kNN based CF.The empirical studies on public large,real datasets show that due to the improvement on the quality of kNN set brought by SS,CF adjusted by the new strategies turned out to be superior to kNN based CF in term of both recommendation performance and computational complexity.
出处 《计算机学报》 EI CSCD 北大核心 2010年第8期1437-1445,共9页 Chinese Journal of Computers
基金 软件开发环境国家重点实验室探索性自选课题 中央高校基本科研业务费专项资金(YWF-10-02-012)资助~~
关键词 个性化推荐 协同过滤 相似度支持度 K近邻 近邻关系模型 recommender system collaborative filtering similarity support k-nearest neighborhood neighborhood based model
  • 相关文献

参考文献10

  • 1Adomavicius G,Tuzhilin A.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions.IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749. 被引量:1
  • 2Sarwar B,Karypis G,Konstan J,Reidl J.Item-based collaborative filtering recommendation algorithms//Proceedings of the 10th International Conference on World Wide Web.Hong Kong,China,2001:285-295. 被引量:1
  • 3Deshpande M,Karypis G.Item-based top-n recommendation algorithms.ACM Transactions on Information Systems,2004,22(1):143-177. 被引量:1
  • 4Bell R M,Koren Y.Improved neighborhood-based collaborative filtering//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:7-14. 被引量:1
  • 5Koren Y.Factor in the Neighbors:Scalable and accurate collaborative filtering.ACM Transactions on Knowledge Discovery from Data,2009,4(1):1-24. 被引量:1
  • 6Kurucz M,Benczúr A A,Csalogny K.Methods for large scale SVD with missing values//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:31-38. 被引量:1
  • 7Paterek A.Improving regularized singular value decomposition for collaborative filtering//KDD Cup Workshop at Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California,2007:39-42. 被引量:1
  • 8Takcs G,Pilszy I,Németh B,Tikky D.Investigation of various matrix factorization methods for large recommender systems//Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition,2008:1-8. 被引量:1
  • 9Herlocker J,Konstan J,Riedl J.An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms.Information Retrieval,2002,5(4):287-310. 被引量:1
  • 10Herlocker J,Konstan J,Terveen L,Riedl J.Evaluating collaborative filtering recommender systems.ACM Transactions on Information Systems,2004,22(1):5-53. 被引量:1

同被引文献1011

引证文献126

二级引证文献869

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部