期刊文献+

巡检机器人人机交互中的操作行为分析 被引量:5

Operation behavior analysis for human-robot interactionof an inspection robot
下载PDF
导出
摘要 为了实现巡检机器人人机间的良好交互,保证操作行为的合理性,提出了一种基于贝叶斯网络的巡检机器人人机交互中的操作行为分析方法。首先,基于贝叶斯网络构建巡检机器人操作意图推理模型,对操作人员的操作意图和操作趋势进行推理,以帮助操作人员决策;其次,根据巡检机器人的操作规则库和操作趋势评估当前操作行为的合理性,避免操作人员的误操作行为。实验表明所提方法实现了巡检机器人操作行为意图的快速推理功能,对操作行为的合理性能够进行有效评估。 Aiming at the operation behavior rationality in the human-robot interaction of a power line inspection robot,an operation behavior analysis method based on Bayesian networks was presented.Firstly,a model for reasoning the intention of the operation behavior was established on Bayesian networks,and the operation behavior intention and trend were reasoned to help the operator to make decisions.Secondly,the operation behavior rationality was evaluated to aviod the misoperation with the operation rules and operation trends of the robot.The results of experiments show that the operation behavior intention can be reasoned quickly and the operation behavior rationality can be established availably by the method mentioned above.
作者 唐立军 李贞辉 袁兴宇 李维 刘爱华 TANG Lijun;LI Zhenhui;YUAN Xingyu;LI Wei;LIU Aihua(Electric Power Research Institute of Yunnan Power Grid Co.,Ltd.,Kunming 650217,China;State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;Advanced Technology Institute,Zhejiang University,Hangzhou 310027,China)
出处 《现代制造工程》 CSCD 北大核心 2021年第3期28-34,共7页 Modern Manufacturing Engineering
关键词 巡检机器人 贝叶斯网络 操作行为分析 人机交互 inspection robot Bayesian networks operation behavior analysis human-robot interaction
  • 相关文献

参考文献4

二级参考文献23

  • 1张少中,杨南海,王秀坤.贝叶斯网络参数的在线学习算法及应用[J].小型微型计算机系统,2004,25(10):1799-1801. 被引量:9
  • 2Cohen I,Bronstein A,Cozman F G.Adaptive online learning of Bayesian network parameters[R]. Report No. HPL-2001-156,HP Labs, 2001. 被引量:1
  • 3Heckerman D. A tutorial on learning with Bayesian networks[R]. Report No. MSR-TR-95-06, Microsoft Research, 1995. 被引量:1
  • 4Spiegelhalter D, Lauritzen S.Sequential updating of conditional probabilities on directed graphical structures [J]. Networks, 1990,20:579-605. 被引量:1
  • 5Bauer E,Koller D,Singer Y.Update rules for parameter estimation in Bayesian networks [C]. Uncertainty in Artificial Intelligence, 1997:3-13. 被引量:1
  • 6Beinlich L,Suermondt H,Cooper G.The alarm monitoring system: A case study with two probabilistic inference techniques for belief networks[C]. Proceedings of the Second European Conference on Artificial Intelligence in Medicine. Springer Verlag, 1989:247-256. 被引量:1
  • 7Sungsoo Lim, Sung-Bae Cho.Online learning of Bayesian network parameters with incomplete data[J].Journal of KISS: Computer Systems and Theory,2006,33:309-314. 被引量:1
  • 8ZHANG Shao-zhong, LIU Lu, DONG Yu-zhi.An online Bayesian networks model for commercial personalized recommendation system[C]. Hong Kong:Proceedings of the Sixth International Conference on Machine Learning and Cybernetics,2007: 3506-3511. 被引量:1
  • 9[1]Heckeman D. Bayesian networks for data mining[J]. Data Mining and Knowledge Discovery. 1997,1, 79-119. 被引量:1
  • 10[2]Lauritzen S L. The EM algorithm for graphical association models with missing data[J]. Comput. Stat. Data Anal. 1995(19):191-201. 被引量:1

共引文献35

同被引文献105

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部