期刊文献+

基于Gibbs抽样的厚尾SV模型贝叶斯分析及其应用 被引量:7

Bayesian Heavy-tailed Stochastic Volatility Model in Finance Analysis Based on MCMC Simulation
下载PDF
导出
摘要 我国的金融时间序列存在普遍的波动性现象,而波动性又存在尖峰厚尾现象。首先对反映波动性特征的厚尾金融随机波动模型(SV-T)进行贝叶斯分析,然后构造基于Gibbs抽样的MCMC数值计算过程进行仿真分析,最后利用DIC准则对SV-N模型和SV-T模型进行优劣比较。研究结果表明:在模拟我国股市的波动性的方面,SV-T模型比SV-N模型更优,更能反应我国股市的尖峰后尾的特性,并且证明了我国股市具有很强的波动持续性。 Our country's finance time series exist the umversal piaenomenon ot volatility, anO tiae volatility has me property or Peak and heavy-tail. The first is to analyze Bayesian heavy-tail finance stochastic volatility model reflecting the volatility characteristic. The second is to design a Markov chain Monte Carlo algorithm procedure with Gibbs sampler to carry on simulation analysis. At last the SV-N model and SV-T model in the quality were compared using the DIC criterion. The findings indicate that, in simulating the volatility of stock market of China, the SV-T model is superior to the SV-N model, which can characterize the leptokurtic of stock returns in stock market of China. It is proved that the stock market in china has a high persistence of volatility.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第9期2479-2482,共4页 Journal of System Simulation
基金 国家自然科学基金项目(7070138) 教育部新世纪优秀人才支持计划项目(NCET050704) 教育部人文社科规划项目(06JA910001)
关键词 SV-T模型 仿真 贝叶斯推断 GIBBS抽样 蒙特卡罗方法 SV-T model simulation Bayesian inference Gibbs samolin~ Monte Carlo methods
  • 相关文献

参考文献14

  • 1朱慧明,韩玉启著..贝叶斯多元统计推断理论[M].北京:科学出版社,2006:143.
  • 2孟利锋,张世英,何信.厚尾SV模型的贝叶斯分析及其应用研究[J].西北农林科技大学学报(社会科学版),2003,3(6):88-92. 被引量:8
  • 3王春峰,蒋祥林,吴晓霖.随机波动性模型的比较分析[J].系统工程学报,2005,20(2):216-219. 被引量:16
  • 4Eric Jacquier, Nicholas G. Poison, Peter E Rossi. Bayesian analysis of stochastic volatility models with fat-tails and correlated errors [J]. Journal of Econometrics (S0304-4076), 2004, 122(1):185-212. 被引量:1
  • 5Renate Meyer, Jun Yu. BUGS for a Bayesian analysis of stochastic volatility models [J]. Econometrics Journal (S1368-4221), 2000, 3(2): 198-215. 被引量:1
  • 6S Sangjoon Kim, Neil Shephard, Siddhartha Chib. Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models [J]. Review of Econom, ic Studies (S0034-6527), 1998, 65(3): 361-393. 被引量:1
  • 7Roman Liesenfeld, Robert C Jung. Stochastic Volatility Models: Conditional Normality Versus Heavy-tailed Distributions [J]. Journal of Applied Econometrics (S0883-7252), 2000, 15 (2): 137-160. 被引量:1
  • 8David J Lunn, Andrew Thomas, Nicky Best, David Spiegelhalter. WinBUGS-A Bayesian modeling framework: Concepts, structure and extensibility [J]. Statistics and Computing (S0960-3174), 2000, 10(4): 325-337. 被引量:1
  • 9Eric Jacquier. Bayesian analysis of stochastic volatility models [J]. Journal of Business & Economics Statistics (S0735-0015), 1994, 12(4): 371-389. 被引量:1
  • 10Watanabe T. A non-linear filtering approach to stochastic volatility models with an application to daily stock returns [J]. Journal of Applied Econometrics (S0883-7252), 1999, 14(2): 101-121. 被引量:1

二级参考文献44

  • 1[1]Stanley H E, et al. Econophysics: what can physicists contribute to economics, Int J [J]. Theoretical and Applied finance, 2000, 3(3): 335-346. 被引量:1
  • 2[2]Schmitt F, et al. Multifractal fluctuations in finance, Int J [J]. Theoretical and Applied finance, 2000, 3(3): 361-364. 被引量:1
  • 3[3]Ye Z, Gu L. A fuzzy system for trading Shanghai stock market in book <>[J]. G J Deboeck eds, John Wiley & Sons Inc, Singapone 1994, 207-214. 被引量:1
  • 4[4]Vandewalle N, et al. Managing both sign and size of fluctuations within the n-Zipf framework, Int J [J]. Theoretical and Applied finance, 2000, 3(3): 409-414. 被引量:1
  • 5[5]Ye Z, Berger T. Information Measures for discrete Random Fields [M]. Scientific Press, Now York, Shanghai, 1998. 被引量:1
  • 6[1]Jonathan H. Wright. A new estimator of the fractionally integrated stochastic volatility model[J]. Economics letters, 1999, 63: 295~303. 被引量:1
  • 7[2]Taylor, S. J. Modelling stochastic volatility[J]. Mathematical Finance, 1994, 4: 183~204. 被引量:1
  • 8[3]Shepard, N. Statistical aspects of ARCH and stochastic volatility [J]. Time Series Models in Econometrics, 1996, 1~67. 被引量:1
  • 9[4]Mandelbrot, B. B. The Variation of Certain Speculative Prices[J]. Journal of Business. 1963, 36: 394~416. 被引量:1
  • 10[5]Fama, E. F. Mandelbrot and The Stable Paretain Distribution[J]. Journal of Business, 1963, 36: 420~429. 被引量:1

共引文献49

同被引文献80

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部