期刊文献+

基于Almon与SBM-BP的长江经济带基础研究绩效评估 被引量:1

Performance Evaluation of Basic Research on the Yangtze River Economic Belt Based on Almon and SBM-BP Models
下载PDF
导出
摘要 创新是我国迈向科技强国的源动力,重视基础研究不仅是创新的要求,更是瞄准世界科技前沿、实现科技强国的有力保证。长江经济带作为我国重大战略发展区域,对其基础研究进行绩效评估具有重要意义。运用Almon确定指标体系滞后期,将SBM与BP神经网络相结合,可有效解决指标体系滞后期及模型科学性问题。研究发现:长江经济带基础研究绩效结果整体较好,部分地区未达到绩效完全有效的原因主要在于基础研究经费冗余与SCI产出不足;绩效结果较好的省市主要集中在长江三角洲城市群和长江中游城市群,成渝城市群绩效结果相形见绌。 Innovation is the source power of China′s progress towards a strong scientific nation.Paying attention to basic research is not only the requirement of innovation,but also the strong guarantee aiming at the forefront of science and technology in the world and making China a powerful country with science and technology.As a major strategic development area of China,the Yangtze River Economic Belt is of great significance for the performance evaluation of its basic research.The Almon polynomial is used to determine the lagging period of the index system and SBM-BP neural networks are combined to effectively solve the lagging period of the index system and the scientific problem of the model.The study found that the performance results of the basic research in the Yangtze River Economic Belt are generally good,while the reasons for not achieving full performance are mainly due to the redundancy of basic research funds and insufficient SCI output.The provinces and cities with better performance results are mainly concentrated in the Yangtze River delta urban agglomeration and urban agglomerations in the middle reaches of the Yangtze River.The performance results of the Chengdu-Chongqing urban agglomeration are dwarfed.
作者 顾平 王嘉璇 GU Ping;WANG Jiaxuan(School of Economics and Management,Jiangsu University of Science and Technology,Zhenjiang Jiangsu 212100,China;Zhenjiang Innovative Talent Development Institute,Zhenjiang Jiangsu 212000,China)
出处 《江苏科技大学学报(社会科学版)》 2020年第4期82-89,共8页 Journal of Jiangsu University of Science and Technology(Social Science Edition)
基金 江苏省社科联重点项目“江苏重点人才工程提质增效关键问题与对策研究”(19SRA-05)。
关键词 基础研究 绩效评估 BP神经网络 滞后分析 SBM模型 basic research performance evaluation BP neural network lagging analysis SBM model
  • 相关文献

参考文献11

二级参考文献107

共引文献88

同被引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部